Tải bản đầy đủ (.pdf) (6 trang)

Đề ôn thpt toán 12 (101)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (113.09 KB, 6 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Giá trị của lim (3x2 − 2x + 1)
A. +∞.

x→1

B. 2.
4x + 1
bằng?
Câu 2. [1] Tính lim
x→−∞ x + 1
A. 4.
B. −1.
2
1−n
Câu 3. [1] Tính lim 2
bằng?
2n + 1
1
A. 0.
B. .
3



4n2 + 1 − n + 2
Câu 4. Tính lim
bằng
2n − 3
3
A. .
B. 1.
2
Câu 5. Giá trị giới hạn lim (x2 − x + 7) bằng?

C. 3.

D. 1.

C. 2.

D. −4.

1
.
2

1
D. − .
2

C. 2.

D. +∞.


C. 7.

D. 5.

C. +∞.

D. 0.

2
C. − .
5

D.

C.

x→−1

A. 0.

B. 9.

x−3
bằng?
x+3
A. −∞.
B. 1.
2
x − 12x + 35

Câu 7. Tính lim
x→5
25 − 5x
A. +∞.
B. −∞.
Câu 6. [1] Tính lim
x→3

2
.
5

Câu 8. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. 1 − sin 2x.
C. −1 + sin x cos x.
D. −1 + 2 sin 2x.
2n − 3
bằng
Câu 9. Tính lim 2
2n + 3n + 1
A. 0.
B. 1.
C. +∞.
D. −∞.
x+1
Câu 10. Tính lim
bằng
x→+∞ 4x + 3
1

1
A. 1.
B. .
C. 3.
D. .
3
4
x−3 x−2
x−3
x−2
Câu 11. [12212d] Số nghiệm của phương trình 2 .3 − 2.2 − 3.3 + 6 = 0 là
A. 3.
B. 1.
C. Vơ nghiệm.
D. 2.
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m = 4.
D. m ≤ 0.

Câu 12. [1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m > 4.

B. m < 0.

Câu 13. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7

A. .
B. .
C. 9.
D. 6.
2
2
1
Câu 14. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 2.
C. 3.
D. 4.
Trang 1/5 Mã đề 1


Câu 15. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m < 3.
C. m ≥ 3.
D. m ≤ 3.
Câu 16. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m > .

C. m < .
D. m ≥ .
4
4
4
4
Câu 17. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 2.
C. Vô số.
D. 3.
1
Câu 18. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 0 ≤ m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 2 < m ≤ 3.
1 − xy
Câu 19. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



18 11 − 29
9 11 + 19
9 11 − 19

2 11 − 3
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
A. Pmin =
3
21
9
9
Câu 20. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 2020.
C. 13.
D. log2 13.
!
3n + 2
2
Câu 21. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 4.
C. 3.
D. 2.
Câu 22. Dãy số nào sau đây có giới hạn khác 0?
sin n
1

B.
.
A. .
n
n
Câu 23. [3-1132d] Cho dãy số (un ) với un =
A. lim un = 1.
C. lim un = 0.

C.

n+1
.
n

1
D. √ .
n

1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
B. Dãy số un khơng có giới hạn khi n → +∞.
1
D. lim un = .
2

Câu 24. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 − 2

A. un =
.
B.
u
=
.
n
n2
5n − 3n2
12 + 22 + · · · + n2
n3
B. +∞.

C. un =

1 − 2n
.
5n + n2

D. un =

n2 + n + 1
.
(n + 1)2

Câu 25. [3-1133d] Tính lim
A.

1
.

3

C. 0.

D.

2
.
3

Câu 26. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un

!
un
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
= +∞.
= a > 0 và lim vn = 0 thì lim
vn !
un
= a , 0 và lim vn = ±∞ thì lim
= 0.
vn

= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
Trang 2/5 Mã đề 1


!
1
1
1
Câu 27. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
C. 2.
A. +∞.
B. .
2
Câu 28. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

D.

5
.
2

(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.
Câu 29. Tính lim

A. 1.

B. 1.
cos n + sin n
n2 + 1
B. +∞.

C. 0.

D. 2.

C. −∞.

D. 0.
un
Câu 30. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. 1.
C. −∞.
D. 0.
Câu 31. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
1
ab
A. 2
.
C. √

.
D. √
.
.
B. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
d = 30◦ , biết S BC là tam giác đều
Câu 32. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
9
26

16
13
d = 120◦ .
Câu 33. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B. 3a.
C. 2a.
D.
.
2
Câu 34. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
a 3
2a 3
A.
.
B. a 3.
C.
.
D.
.
3
2
2

3a
Câu 35. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

2a
a
a 2
a
A.
.
B. .
C.
.
D. .
3
3
3
4

Câu 36. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 58
3a 38

a 38
3a
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 37. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.
B. a 6.
C.
.
D.
.
6

2
3
Trang 3/5 Mã đề 1


Câu 38. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
2a
5a
8a
.
B. .
C.
.
D.
.
A.
9
9
9
9
Câu 39. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2

a 2
.
C. a 3.
.
A. a 2.
B.
D.
3
2
[ = 60◦ , S O
Câu 40. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ BC) bằng

√ Khoảng cách từ O đến (S

a 57
2a 57
a 57
A. a 57.
.
C.
.
D.
.
B.
17
19
19
Câu 41.

đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
k f (x)dx = f

A.
Z
C.

f (x)g(x)dx =

Z

f (x)dx, k ∈ R, k , 0.
Z
f (x)dx g(x)dx.

( f (x) + g(x))dx =

B.
Z
D.

( f (x) − g(x))dx =

f (x)dx +

Z

g(x)dx.
Z


f (x)dx −

g(x)dx.

Câu 42. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 43. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Cả ba đáp án trên.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 44. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Chỉ có (II) đúng.


C. Chỉ có (I) đúng.

D. Cả hai câu trên đúng.

Câu 45.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
A.
Z
B.

[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
C.


Câu 46.
Z Trong các khẳng định sau, khẳng định nào sai? Z
A.

0dx = C, C là hằng số.

B.

dx = x + C, C là hằng số.
Trang 4/5 Mã đề 1


Z
C.

xα+1
x dx =
+ C, C là hằng số.
α+1
α

Z
D.

1
dx = ln |x| + C, C là hằng số.
x

Câu 47. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.

B. 2.

C. 3.

Câu 48. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị nhỏ nhất trên K.

D. 4.

B. f (x) có giá trị lớn nhất trên K.
D. f (x) xác định trên K.

Câu 49. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
f (x)dx = f (x).
D.

f (x)dx = F(x) + C.

Câu 50. Trong các khẳng định sau, khẳng định nào sai?

A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
dx = log |u(x)| + C.
C.
u(x)
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2. A

B
D

3.
5.

4.

B

D

7.
9. A

D

11.
13.
17.

C

8.

D

10.

D

B
D

25. A

18.

D


20.

D

22.

C

24.

C

26.

27.

C
D

29.
B

33.

D

D

30.


D

32.

D

34. A
36. A

37. A

38. A

39.

D

45.

D
B

47.
49.

40.

C

43.


B

28.

35. A

41.

C

16. A

B

23.

31.

D

14. A

19. A
21.

6.

12.


B

15.

B

C

42.

D

44.

D

46.

C

48. A

C
B

50.

1

C




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×