Chương 11. Nguyên lý D’Alembert
.c
om
BÀI GIẢNG
cu
u
du
o
ng
th
an
co
ng
Môn học: CƠ HỌC LÝ THUYẾT
Bộ môn Cơ Kỹ thuật – Khoa Khoa học Ứng dụng – Đại học Bách khoa Tp.HCM
CuuDuongThanCong.com
/>
Phần III
co
ng
.c
om
ĐỘNG LỰC HỌC
th
an
Chương 10: Phương trình vi phân chuyển động
ng
Chương 11: Nguyên lý D’Alembert
du
o
Chương 12: Các định lý tổng quát động lực học
cu
u
Chương 13: Nguyên lý di chuyển khả dĩ
Chương 14: PT tổng quát động lực học và PT Lagrange II
Bộ môn Cơ Kỹ thuật – Khoa Khoa học Ứng dụng – Đại học Bách khoa Tp.HCM
CuuDuongThanCong.com
/>
Chương 11
ng
.c
om
NGUYÊN LÝ D’ALEMBERT
an
co
NỘI DUNG
ng
th
11.1. Các đặc trưng hình học khối lượng của cơ hệ
du
o
11.2. Lực quán tính, nguyên lý D’Alembert
cu
u
11.3. Thu gọn hệ lực qn tính
Bộ mơn Cơ Kỹ thuật – Khoa Khoa học Ứng dụng – Đại học Bách khoa Tp.HCM
CuuDuongThanCong.com
/>
Chương 11. Nguyên lý D’Alembert
11.1. Các đặc trưng hình học khối lượng của cơ hệ
Chuyển động của cơ hệ không những phụ thuộc vào các lực tác
.c
om
động mà còn phụ thuộc vào một số yếu tố khác ngoài lực như: Khối
lượng của hệ, hình dáng của hệ và sự phân bố khối lượng bên trong
co
ng
hình dáng của hệ.
an
Khối lượng của cơ hệ:
cu
u
du
o
ng
độ quán tính của cơ hệ.
th
Là một đại lượng vô hướng luôn dương đặc trưng cho mức
n
M mk 0, kg
k 1
Quán tính là một thuộc tính của vật chất phản ánh sự dễ dàng
hay khó khăn thay đổi trạng thái cơ học đã có của vật. Qn tính
càng lớn vật càng khó thay đổi trạng thái cơ học và ngược lại.
Bộ môn Cơ Kỹ thuật – Khoa Khoa học Ứng dụng – Đại học Bách khoa Tp.HCM
CuuDuongThanCong.com
/>
Chương 11. Nguyên lý D’Alembert
11.1. Các đặc trưng hình học khối lượng của cơ hệ
.c
om
Khối lượng của cơ hệ:
n
ng
Nếu cơ hệ là một mơi trường liên tục thì:
co
mk k .dV M k .dV
th
an
k 1
.dV
V
k
du
o
ng
Nếu cơ hệ của chúng ta là một môi trường liên tục và đồng chất :
cu
u
k const M
.dV V
V
Bộ môn Cơ Kỹ thuật – Khoa Khoa học Ứng dụng – Đại học Bách khoa Tp.HCM
CuuDuongThanCong.com
/>
Chương 11. Nguyên lý D’Alembert
11.1. Các đặc trưng hình học khối lượng của cơ hệ
Khối tâm của cơ hệ:
.c
om
Là một điểm hình học tồn tại trong khơng gian của hệ, được ký
hiệu bằng điểm C và có vị trí được xác định như sau:
cu
u
du
o
rC r
k
Mk(mk)
ng
C
th
an
r2
co
M2(m2)
M1(m1)
r1
rC
x
y
mk rk
ng
z
m
xC
yC
zC
k
m
k
xk
M
mk yk
Với
M
m
k
M
mk zk
M
Bộ môn Cơ Kỹ thuật – Khoa Khoa học Ứng dụng – Đại học Bách khoa Tp.HCM
CuuDuongThanCong.com
/>
Chương 11. Nguyên lý D’Alembert
11.1. Các đặc trưng hình học khối lượng của cơ hệ
ng
.c
om
n
mk .xk
vCx xC k 1
M
n
mk . y k
vCy yC k 1
M
n
̇
.
m
zk
k
vCz zC k 1
M
mk .vk
M
an
ng
th
k 1
cu
u
du
o
vC rC
co
n
Bộ môn Cơ Kỹ thuật – Khoa Khoa học Ứng dụng – Đại học Bách khoa Tp.HCM
CuuDuongThanCong.com
/>
Chương 11. Nguyên lý D’Alembert
11.1. Các đặc trưng hình học khối lượng của cơ hệ
m
.
xk
k
WCx
xC k 1
M
n
mk .
yk
WCy
yC k 1
M
n
mk .
zk
WCz
zC k 1
M
an
W C vC rC
th
k 1
u
du
o
ng
M
cu
co
mk .W k
n
ng
.c
om
n
Bộ môn Cơ Kỹ thuật – Khoa Khoa học Ứng dụng – Đại học Bách khoa Tp.HCM
CuuDuongThanCong.com
/>
Chương 11. Nguyên lý D’Alembert
11.1. Các đặc trưng hình học khối lượng của cơ hệ
co
mk
du
o
ng
hk
cu
u
yk
xk
kg .m 2
an
zk
J m k hk2 ;
th
z
ng
cơ hệ khi cơ hệ quay quanh trục.
.c
om
Moment quán tính của hệ đối với một trục
Là một đại lượng vơ hướng, dương biểu thị qn tính của
y
Xét trong hệ tọa độ Oxyz
J x m k ( y k2 z k2 )
J y m k ( xk2 z k2 )
J z m k ( xk2 y k2 )
x
Bộ môn Cơ Kỹ thuật – Khoa Khoa học Ứng dụng – Đại học Bách khoa Tp.HCM
CuuDuongThanCong.com
/>
Chương 11. Nguyên lý D’Alembert
11.1. Các đặc trưng hình học khối lượng của cơ hệ
.c
om
Moment quán tính của vật rắn đối với trục z
m
co
r Là cánh tay địn vng góc với trục z
dm dV Là vi phân khối lượng
th
an
Với:
ng
J z r 2 dm
J z r 2 dV
V
cu
u
du
o
ng
Suy ra:
Bộ môn Cơ Kỹ thuật – Khoa Khoa học Ứng dụng – Đại học Bách khoa Tp.HCM
CuuDuongThanCong.com
/>
Chương 11. Nguyên lý D’Alembert
11.1. Các đặc trưng hình học khối lượng của cơ hệ
.c
om
Ví dụ: Tính Moment quán tính của thanh thẳng đồng chất đối với
trục () khối lượng M dài L như hình vẽ
1. Trục () đi qua đầu thanh.
ng
2. Trục () đi qua trọng tâm của thanh.
an
co
Giải
1. Trục () đi qua đầu thanh: Xét một phân tố nhỏ:
u
xk
B
cu
xk
du
o
(M)
ng
mk
A
m k . xk
th
L
x
M
Với
L
Theo định nghĩa
J m k xk2 xk2 xk
L
J x dx
2
0
2
L3
3
ML
J
3
Bộ môn Cơ Kỹ thuật – Khoa Khoa học Ứng dụng – Đại học Bách khoa Tp.HCM
CuuDuongThanCong.com
/>
Chương 11. Nguyên lý D’Alembert
11.1. Các đặc trưng hình học khối lượng của cơ hệ
Tương tự như trên
mk
L/2
J
(M)
ML2
J
12
L/2
ng
th
L/2
B
12
L/2
co
xk xk
an
A
x
x 2 dx
L3
ng
()
.c
om
2. Trục () đi qua trọng tâm của thanh : Xét một phân tố nhỏ
()
D
(M)
C
cu
u
du
o
Có thể sử dụng cơng thức trên cho tấm hình chữ nhật đồng chất
x
A
B
L/2
L/2
Bộ mơn Cơ Kỹ thuật – Khoa Khoa học Ứng dụng – Đại học Bách khoa Tp.HCM
CuuDuongThanCong.com
/>
Chương 11. Nguyên lý D’Alembert
11.1. Các đặc trưng hình học khối lượng của cơ hệ
.c
om
Ví dụ: Tính moment quán tính của vành tròn và mặt trụ tròn đối với
trục () đi qua tâm của vành và mặt trụ tròn khối lượng M, bán kính
R như hình vẽ
(M)
ng
R
O
du
o
mk
J mk R 2 R 2 mk
J MR
2
u
O
th
(M)
Theo định nghĩa
cu
R
co
an
ng
Giải
Bộ môn Cơ Kỹ thuật – Khoa Khoa học Ứng dụng – Đại học Bách khoa Tp.HCM
CuuDuongThanCong.com
/>
Chương 11. Nguyên lý D’Alembert
11.1. Các đặc trưng hình học khối lượng của cơ hệ
.c
om
Ví dụ: Tính Moment quán tính của tấm tròn và trụ tròn đồng chất
đối với trục () đi qua tâm của tấm và trụ tròn khối lượng M, bán
kính R như hình vẽ
ng
O
du
o
R
u
O
th
(M)
cu
r
co
(M)
dr
R
Xét một phân tố nhỏ ta có
an
ng
Giải
mk
M
(2 rk . rk )
2
R
Theo định nghĩa
J m r
2
k k
2 Mrk3
rk
2
R
2 Mr 3
dr
J
2
R
0
R
1
J MR 2
2
Bộ môn Cơ Kỹ thuật – Khoa Khoa học Ứng dụng – Đại học Bách khoa Tp.HCM
CuuDuongThanCong.com
/>
Chương 11. Nguyên lý D’Alembert
11.1. Các đặc trưng hình học khối lượng của cơ hệ
Moment quán tính của hệ đối với tâm O
cơ hệ khi cơ hệ quay quanh tâm O.
JO m r
co
ng
z
Trong hệ tọa độ Oxyz
th
rk
u
yk
du
o
ng
J O m k rk2 m k ( xk2 y k2 z k2 )
cu
xk
2
k k
an
zk
O
.c
om
Là một đại lượng vơ hướng, dương biểu thị qn tính của
y
xk2 y k2 y k2 z k2 xk2 z k2
)
mk (
2
2
2
1
JO (J x J y J z )
2
x
Bộ môn Cơ Kỹ thuật – Khoa Khoa học Ứng dụng – Đại học Bách khoa Tp.HCM
CuuDuongThanCong.com
/>
Chương 11. Nguyên lý D’Alembert
11.1. Các đặc trưng hình học khối lượng của cơ hệ
2
ng
J M
.c
om
Trong kỹ thuật, moment quán tính khối lượng thường được biểu diễn
dạng:
co
Với: M là khối lượng tồn vật (kg)
th
an
là bán kính qn tính (m)
du
o
cu
u
ng
()
O
Bộ mơn Cơ Kỹ thuật – Khoa Khoa học Ứng dụng – Đại học Bách khoa Tp.HCM
CuuDuongThanCong.com
/>
Chương 11. Nguyên lý D’Alembert
11.1. Các đặc trưng hình học khối lượng của cơ hệ
Moment quán tính ly tâm của hệ
n
J xy I xy mk .xk . yk
.c
om
Đối với hệ trục xy:
k 1
n
ng
J yz I yz mk . yk .zk
an
co
Đối với hệ trục yz :
J zx I zx mk .zk .xk
k 1
du
o
ng
th
Đối với hệ trục zx:
k 1
n
cu
u
J xy J yx ; J yz J zy ; J zx J xz
Bộ môn Cơ Kỹ thuật – Khoa Khoa học Ứng dụng – Đại học Bách khoa Tp.HCM
CuuDuongThanCong.com
/>
Chương 11. Nguyên lý D’Alembert
11.1. Các đặc trưng hình học khối lượng của cơ hệ
.c
om
Trục quán tính chính của cơ hệ.
Là trục sao cho tất cả các moment quán tính ly tâm của cơ hệ có
ng
chứa chỉ số tên trục ấy phải đồng loạt bằng không.
an
co
Nếu Jxz = Jyz = 0 thì trục z là trục qn tính chính của hệ.
th
Nếu trục quán tính chính của cơ hệ đi qua khối tâm C của cơ
du
o
u
cu
cơ hệ.
ng
hệ ấy thì nó sẽ được gọi là trục qn tính chính trung tâm của
Bộ môn Cơ Kỹ thuật – Khoa Khoa học Ứng dụng – Đại học Bách khoa Tp.HCM
CuuDuongThanCong.com
/>
Chương 11. Nguyên lý D’Alembert
11.1. Các đặc trưng hình học khối lượng của cơ hệ
.c
om
Định lý liên hệ giữa các trục song song
Liên hệ moment quán tính giữa 2 trục song song
J J C Md 2
ng
(C)
co
d
an
Với M là khối lượng vật
C
th
d là khoảng cách giữa 2 trục song song
cu
u
du
o
ng
JC là moment quán tính đối với trục qua
khối tâm
Bộ môn Cơ Kỹ thuật – Khoa Khoa học Ứng dụng – Đại học Bách khoa Tp.HCM
CuuDuongThanCong.com
/>
Chương 11. Nguyên lý D’Alembert
11.1. Các đặc trưng hình học khối lượng của cơ hệ
.c
om
Định lý liên hệ giữa các trục không song song (công thức xoay trục)
J L J x cos 2 J y cos 2 J z cos 2
th
J xy mk xk yk , J yz mk yk z k , J xz mk xk z k
ng
Với
an
co
ng
2 J xy cos cos 2 J yz cos cos 2 J xz cos cos
Là moment tích quán tính khối lượng
L
du
o
z
cu
u
O
y
x
Bộ môn Cơ Kỹ thuật – Khoa Khoa học Ứng dụng – Đại học Bách khoa Tp.HCM
CuuDuongThanCong.com
/>
Chương 11. Nguyên lý D’Alembert
11.1. Các đặc trưng hình học khối lượng của cơ hệ
.c
om
Ví dụ: Tính Moment quán tính của thanh thẳng đối với trục () đi qua
trọng tâm của thanh khối lượng M dài L như hình vẽ
Giải
(C)
co
ng
Moment quán tính của thanh đối với trục
đi qua đầu thanh:
(M)
B
C
L/2
JA
ML2
3
u
du
o
ng
Sử dụng công thức đổi trục song song
cu
L/2
x
th
A
an
(A)
J A J C Md 2
J C J A
J C
2
2
ML
ML
Md 2
3
4
ML2
12
Bộ môn Cơ Kỹ thuật – Khoa Khoa học Ứng dụng – Đại học Bách khoa Tp.HCM
CuuDuongThanCong.com
/>
Chương 11. Nguyên lý D’Alembert
11.1. Các đặc trưng hình học khối lượng của cơ hệ
.c
om
Moment quán tính khối lượng của một số vật đồng chất đơn giản
Thanh thẳng đồng chất khối lượng M chiều dài L
ng
B
ML2
J zB
3
th
C
A
an
co
1. Trục () đi qua đầu thanh tại A
du
o
ng
J zA
cu
u
2. Trục () đi qua khối tâm C cách A L/2
A
C
B
J zC
ML2
12
Bộ môn Cơ Kỹ thuật – Khoa Khoa học Ứng dụng – Đại học Bách khoa Tp.HCM
CuuDuongThanCong.com
/>
Chương 11. Nguyên lý D’Alembert
11.1. Các đặc trưng hình học khối lượng của cơ hệ
Moment quán tính khối lượng của một số vật đồng chất đơn giản
J O J zO MR 2
co
O
R
ng
z
J xO J yO MR 2 / 2
y
an
.c
om
Vành tròn đồng chất khối lượng M bán kính R
ng
th
z
R
O
u
z
cu
du
o
Mặt trịn (trụ trịn) đồng chất khối lượng M bán kính R
J O J zO
y
x
J xO J yO
1
MR 2
2
1
MR 2
4
Bộ môn Cơ Kỹ thuật – Khoa Khoa học Ứng dụng – Đại học Bách khoa Tp.HCM
CuuDuongThanCong.com
/>
Chương 11. Nguyên lý D’Alembert
11.1. Các đặc trưng hình học khối lượng của cơ hệ
Moment quán tính khối lượng của một số vật đồng chất đơn giản
.c
om
Tấm chữ nhật đặc, đồng chất, dày đều
y
ng
M
ng
du
o
O
th
an
co
ly
cu
u
1 2
J x Ml y
3
x
lx
1 2
J y Ml x
3
1
J z J O M lx2 l y2
6
Bộ môn Cơ Kỹ thuật – Khoa Khoa học Ứng dụng – Đại học Bách khoa Tp.HCM
CuuDuongThanCong.com
/>
Chương 11. Nguyên lý D’Alembert
11.1. Các đặc trưng hình học khối lượng của cơ hệ
Moment quán tính khối lượng của một số vật đồng chất đơn giản
.c
om
Ống trụ tròn đồng chất khối lượng M bán kính R
ng
zC
J zC MR J C
h
2
th
an
co
2
ng
M
u
du
o
C
cu
R
yC
h
J xC J yC
1 2 h2
M R
2
6
xC
Bộ môn Cơ Kỹ thuật – Khoa Khoa học Ứng dụng – Đại học Bách khoa Tp.HCM
CuuDuongThanCong.com
/>