Tải bản đầy đủ (.pdf) (117 trang)

Bài tập phần điện, vật lý đại cương, khoa Vật lý, Đại học sư phạm

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (652.5 KB, 117 trang )

()* ( +

2 34

5

67
%
< . <= .
D=−

B

E

F
$"

G

5

&< B

,
,

)

'



-

=
- =

8
D =−

9 1
&< B
B

=

,

'

.

, '
)/ ( 01) & >

8
%

9 1
. ()* (


: ;
(
?@

#

$% &'

,

'

-

0 ( 0 : )/ ( − 0 ? B
≈ 0)BC ( −+ A
:()* ( − ( ? B

HI ; 7
J= 3K
- O $#
)/ ( 01) & M 6N

8

R

-

!"

)/ ( 0 1

9
DB = −

9

J= 3K )

$
)/P ( BP &

L )

O@

B

Q
B

D
&< B
0 ( 0 : )/ ( − 0 ? B
=
=
≈ )B* ( C/ : L ?

− BP B
B

DB Q
/)/P ( : )/P ( ?

C

< > L
L HN 3
% < > L
Z $# /((
< > L $#

S

&

O T $% &'
H
S
"= V
X , ' <( . Y ( P1)
F
' & M 6N
- % < > L " &
. B(

T
;
>

& M 6N

6N
U
2
&
W
O
HN 3 $
%
[ \
"


]

% < > L

M

,

'

^ < > L

9

6N

@



D

_

< =
<(
= B ( −P 1
B

< > L

$#

& @

_ + D3 +

`

O) 3a 3

;

_.

=(

9


J @

tgα =

Fd =

tgα =

Fd
P

kq1 q 2
kq 02
=
2
r2
4(2l. sin α )
q 02
kq 02
=
P=
64πεε 0 l 2 sin 2 α .tgα 16l 2 . sin 2 α .tgα

q 02
4πεε 0 .16l 2 sin 2 α .P

HM@

(

)
( ) ( )
2

1.9.10 9. 4.10 −7
P=
= 0,157( N )
16.0,2 2. sin 2 30 0 .tg 30 0
m=

Y

'
L
b ?

& M 6N
3L

P 0,157
=
= 0,016(kg ) = 16( g )
9,81
g

b ) O

J

< > L

HN 3

$
$

C !" #
Z

c $#

&

*Y( :ε . B M

% < >
; 3L


[ &" < > $

C)

d O M

; < > L

S

&


& '

q 02
P=
64πε 1ε 0 l 2 sin 2 α 1 .tgα 1

`
e H f _
6N @

% < > L
6;
6N

3L
W ;

@

: ?
>)

g

^ < > L HI 8
] O) $#
'

q 02
P − P1 =

64πε 2ε 0 l 2 sin 2 α 2 .tgα 2

%

% 34
67
$

F
)

:B?

hS & % @
:C?

P = mg = ρVg ; P1 = ρ 0Vg

[ : ?) :B?

:C?)

O@

P − P1 ε 1 sin 2 α 1 .tgα 1 ρ − ρ 0
=
=
P
ε 2 sin 2 α 2 .tgα 2
ρ


ε 1 sin 2 α 1 .tgα 1 .ρ = ε 2 sin 2 α 2 .tgα 2 ( ρ − ρ 0 )
ε 2 . sin 2 α 2 .tgα 2
ρ = ρ0 .
ε 2 . sin 2 α 2 .tgα 2 − ε 1.sin 2 α1.tgα1
HM ; @ ε 1 = 1; ε 2 = 2; α 1 = 30 0 ; α 2 = 27 0 ; ρ 0 = 800(kg / m 3 )
ρ=

*
3

2. sin 2 27 0.tg 27 0
.800 = 2550(kg / m 3 )
2. sin 2 27 0.tg 27 0 − sin 2 30 0.tg 30 0

< > L
O
W 3

& M 6N
$# $

,
$#

O $% &'
A 6Z

ρ
#

\ O

HM

& M 6N

,
ε
% HN 3

$#
X

b & M 6N
&
& '

6N
J

U
,

L HN
:3L ? O

- < > L :ρ? = >
,
6



2 34

% '

%

d

U$

ρ = ρ1 .

i;

W &,

O ,

5

% HN 3

U

hX
&'

ε
ε−


& '

ε −1

J

,

6

@

ρ1

'

1

) & M 6N
0

.

)/ ( 1)

\

X


W
l% 8
9 M
B+
. 0) ( & ) & >
%

X < j
\ X
$

k $%
[

. (+

"

m

\ X
1

'

V

<

< j


Fht = FCoulomb
v2
e2
m
=
r
4πεε 0 r 2
v2 =

r.e 2
e2
=
m.4πεε 0 r 2 4πεε 0 mr

v=
HM)

sin 2 α 1 .tgα
sin 2 α 2 .tgα 2

sin 2 α 1 .tgα 1 = sin 2 α 2 .tgα 2

ε

,
<
< j

&


O@

@
ρ=

/

ρ 0 = ρ1 , ε 2 = ε , ε 1 = 1 )

ε .sin 2 α 2 .tgα 2
= ρ1
ε .sin 2 α 2 .tgα 2 − sin 2 α 1 .tgα1

α1 = α 2

$\

Y)

e2
4πεε 0 mr

=

e
2 πεε 0 mr

O@
v=


1,6.10 −19
−12

−31

2 π .1.8,86.10 .9,1.10 .10

−10

= 1,6.10 6 (m / s )

k 36; % 34

-

6;


P

% c e) !) 1 - X
. C ( +1R S
e 1 $ " e1 . C
&
& '

%
6Z

L 6N S % , '
( ( +1 l% 8
% 34
n
N=
) e! . Y ) !1 . *
1%
, '
W

F1

e

F
F2

!

1

O@
oE
F1 =

F1 -
q1q 2
3.10 −8.5.10 −8
=

= 8,4.10 −3 ( N )
2
−12
−2 2
4πεε 0 rAB 4π .1.8,86.10 .(4.10 )

oE
F2 =

<@

F2 -
<@

q1q3
3.10 −8.10.10 −8
=
= 30.10 −3 ( N )
2
4πεε 0 rAC
4π .1.8,86.10 −12.(3.10 − 2 ) 2

o ]a 3
i9 )

9

J @


BC 2 = AB 2 + AC 2

% e!1
E

F

e `

O = 67

N= ;

tgα =

1 W
pX ;

- F
-

O@
e1

F1 8,4.10 −3
=
≈ 0,28
F2 30.10 −3

6

6N '

I
$#

@

X

O

V%

8

α = 15 0 42'

$U @

\ @<
, '
S


F = F12 + F22 = (8,4.10 −3 ) 2 + (30.10 −3 ) 2 = 3,11.10 −2 ( N )

+

1O
,

M

,

'

Qg ∆
3J

lf

' $#
O) = 67
, '
O

-

6Z
,

% 3J
% 34

<( : T

'
F1 =

q


3J

q1q0
4πεε 0 (B C ) 2

=

1 5
,

;

#
'

<( H

e! M

,

'

q 2 q0
4πεε 0 ( AC ) 2

S

g

H

,
!? S

'

<

\

%
; 6Z

W
q


%

1 #



O@

; ∆)

F H


H

= F2

D

1

D
DB
e
lf

= L

- n

N=

!

F 3g

∆@

F∆ = F1 cos α − F2 cos α = ( F1 − F2 ) cos α = 0

i9 ) F
6Z

q

c O
M

= L 6;
, ' <

F = F1 sin α + F2 sin α =

0
&'

% 34
'
( . *

= 67

2 q1q0

sin α

4πεε 0

l AB
2 sin α

X

,

,
W

'
;

2

=

O

;

2 q1q0 sin 3 α
2
πεε 0l AB

\ < . :*rC? ( 01 S U
, ' s . C ( P1 : S

k
&

V
?

" $%



k V "
% 34
)
O@

' 3s 1
t u
J

,

k

'

,
3

Fx = dF sin α ;
:

= L
3
<
3D %= 34
Fy = dF cos α

V " ?


:

k

< 3DV

V " ?

O@

3D

;

dF =

dQ.q
4πεε 0 r02

dQ =

Q
dl ;
πr0

]

'


M V5

dl = r0 .dα

Qq

dF =

2

4π εε 0 r02

)

V



J

D . ()

π
2

Qq

F = Fx =

2




π

2
0 0

4π εε r

cos α .dα =

Qq
2

2π εε 0 r02

2

HM@
F=

3.10 −7.(5 / 3).10 −9
= 1,14.10 − 3 ( N )
2
−12
−2 2
2.π .1.8,86.10 .(5.10 )

( 1O

(

,

'
&

16Z

X

,

hA . 3 . (

\ < . + ( +1
& ':
? '

@

$U %

'

6Z
) he . Y

,


) h! . *

O

%

) h1 . 0

A1 . P
B E

% 34

,

'

< . * ( (1 S

1

)

\

%
e) !) 1 1

X & >

$"@

3.


1

<
!

= 34
op,

6Z

t
3 <

u

J



h

e


,

6Z

e T

A

@

= 67

T

W @
v1

1

v1

v!

h

!

E A = E A1 + E A2 =

EA =


q1
4πεε 0 ( AM )

2

v1B

<

+

ve

e

A

q2
4πεε 0 ( AN ) 2

1
8.10−8
3.10 −8
+
4π .1.8,86.10 −12 (4.10 − 2 ) 2 (6.10 − 2 ) 2

= 52,5.10 4 (V / m)


op,

6Z

3 <

E B = E B1 − E B2 =

EB =


! T

q1
4πεε 0 ( BM )

2



= 67

6N

W @

q2
4πεε 0 ( BN ) 2


1
8.10 −8
3.10 −8

= 27,6.10 4 (V / m)
−12
−2 2
−2 2
4π .1.8,86.10
(5.10 )
(15.10 )

o _ 67

)

W

]T

8

t

- ve
HM

v! 6N V%
H)


6N @

8

6

I


EC = EC21 + EC22 − 2 EC1 EC 2 cos α

w

O@
2

2

MC 2 + NC 2 − MN 2 9 2 + 7 2 − 10 2
cos α =
=
= 0,23
2 MC.NC
2 .9 .7

2

MN = MC + NC − 2 MC.NC. cos α

8.10 −8

=
=
= 8,87.10 4 (V / m)
−12
−2 2
2
4πεε 0 (CM )
4π .8,86.10 .(9.10 )
q1

EC

1

q2
3.10−8
=
= 5,50.10 4 (V / m)
−12
−2 2
2
4πεε 0 (CN )
4π .8,86.10 .(7.10 )

EC =
2

i9 @
EC = (8,87.10 4 ) 2 + (5,50.10 4 ) 2 − 2.8,87.10 4.5,50.10 4.0,23 = 9,34.10 4 (V / m)


p\ V%

8

= 67

EC

1

sin θ

=

- v1)

EC
sin α

V%

8

O θ

1 W

v1

1A


8

t

HM H @

E C sin α

sin θ =

1

EC

8,87.104. 1 − (0,23) 2
= 0,92
sin θ =
9,34.104
B

O

θ = 67 009'

O@ FC = q.EC = 5.10 −10.9,34.10 4 = 0,467.10 −4 ( N )
-

D1


1

6N
,

,

6Z
O@

'

J

M

E = E1 − E2 =

;

'
,

W

-

<
B< S
6Z

,

,

' )

q
2
0 1

4πεε r



,

2q
2
0 2

4πεε r

,

6Z

%

(


6Z

=

v1

3

q
4πεε 0

I
b

\

6Z

T

1 2

r12 r22

= 67

M

6N


W


Q>H
\ h %
, ' < X & >
' B< X & >
: ? ;
& >
%

q

E=

4πεε 0

)

,
<

6Z
B<

,

p\

h %


,

1
2
=0

2
r
(l − r ) 2

1
2

=0
2
r
(l − r ) 2

(l − r ) 2 = 2 r 2

l − r = 2r
r=
i9 )
, '

,

l
1+ 2


6Z
8 ' %

,

'

B C

,

'

10
≈ 4,14(cm)
1+ 2
,

B l% 8
6Z
- O O S@
/

=

,

'


X

,

'
<
6Z

$#

T
C

,

<
B<
Y) Y : ?

'

U

,

\

X 4

%


h #

W

)$" #

367

v( . ( :3

? 1%

,
9

%

,

'

' 367
6H @
367

$
6N

J @ % S= , 6Z

6Z
O T
X ;

M

U H%

c

3J
W 8 HM W $#

A"
S
H% c
- 4 % W % , ' $#
, ' U % c
M 3 , HI
% , 6Z $#
,
K
] 9 ) , 6Z
n
X
B p\ S $
,
O $ % V"=

6Z


'
,

S V

M V5
'

T

3J )

6
% $#

4

%
6N
&

S=
W )

?
T

&I ;


:v ) vY?) :vB) v*?

X ;

H%

c

-

4

%

W )

@
:vC) v/? T

= 67

T

W


1%

S=


, '
N= ;

$#
]

'

Y) B *
C/
% O $#

M V5

,

6Z

%
B(( :
n

,

/
vB*

I?

N= O


*

6Z

B((

Y

x

% 8 $#

v

Y

vC/

(
$? 1%
1%

,

'

367

S=

6

,

'
I@

S
Y) B *

E = 2 E14 =

? 1%

,

'

C/

%

,

6Z

q

=


4πεε 0 a 2

Y

x

*

πεε 0 a

Y

2

6

B

C

v 6;
v

E = E14 =

Y ( 1r

vB*

vC/


q

B

/

2πεε 0 a 2

Y

/

x

$ @

S= , '
T 3J S
% c
M 3,
x %
, 6Z
O T
X ;
6
6N
W ] O)
, 6Z 3
S= , ' B * C /

x $# &
$#
, 6Z 3 S= , '
Y
x@

0

*

q

6N @ , 6Z
n
X
O X ; $# @
6Z v Y

,

C

B

$#
v

'

S


C

Y

E14 = E25 = E36 = 2 E1 = 2

O \ 3a 3
= 67
-

"=@

B

C

i9 )

,

6Z

x

q
2πεε 0 a 2

B) eey
X S = q

!
X < > L '

6N
- < > L $#
L ,
X O $#

.
$

)

'
3J

,
;

W ; 9 X ,
S σ.
, T
, '
S = q
` M
0
< >
, '
- O $# < . ( 1 b HN 3
H ; = 67

q
5


e
α

!

ey

8 '

$#

@

T +F+P=0

O@
[

P = mg ;

I
tgα =

F = Eq =

σq

2εε 0

J @
F
σq
4.10 −5.10 −9
=
=
= 0,2309
P 2εε 0 mg 2.1.8,86.10 −12.10 − 3.9,81

α = 130
e
α

D

ey
_

Y hX

G

l% 8
$./
B 1 5
6Z

k $% &'

6Z

X
#

X

,

.+
,

6Z

'

z

,
X

W
\

" $→(
$\
5
6Z
$U X S = q


;

9

X

,

4

-

G

S σ . ( +1r
%

6N HI

\
,

W

B

G

X


$\

5

'


C 1 5
X ,

#

" $
$U X

6Z

$\
, '

5
\

6N

\

$\

5


'

6Z

3v

3vB
e

3v

$
x
3<

1
i

G
& {

O

[
'

,

3>

n

& {
@

X

O $W X

3 lf 3>

& {

O $% &'

:| ?

dQ = σ .2πr.dr

1
8

& {
t

p,
%

u


%

J

6Z

,

dE O

6Z

,
)

'
,

&

6Z

3

3< 1

,

e $#


n

J > %

= L dE 1

dE 2 ]

;

O

dE

(

)

> G

(

)

3/ 2

.dQ =

'


M V5

bσ .r.dr

(

2εε 0 r 2 + b 2

e @
a

0

r.dr

(r

2

+b

)

2 3/ 2


1
=

2

2εε 0
r + b2

a
=
0

e

% 8 dE O

xe

dE

dq
b
b
=
.
2
2
2
2
4πεε 0 r + b
4πεε 0 r 2 + b 2
r +b


E = dEr =

2εε 0

6Z

i9 @

dE r = dE 2 = dE cos α )

p,

6Z

\=

= L dE1 $#

dEr =

\

σ
1
1−
2εε 0
1 + a 2 / b2

)

3/ 2


n


10 −8
1
E=
1−
≈ 226 (V / m )
−12
−2 2
−2 2
2.8,86.10
1 + (8.10 ) / (6.10 )
B A"

$ → ()

O@

1
σ
σ
=
1−
b → 0 2εε
2εε 0
1 + a2 / b2
0

E = lim


p,

6Z

&

C A" $

$→( O$\

) %= 34

5

5

M

L

;

,

6Z

3

S = q


'

,

W

l%

8

@

a2
≈1− 2
2b
1 + a2 / b2
1

i9 @ E =
p,

a2
σ
1− 1− 2
2εε 0
2b

6Z


&

* hX
X

$

O$\

S
,

=

$%

L

6Z

q
σ .a 2
σ .(πa 2 )
=
=
2
2
4εε 0b
4πεε 0b
4πεε 0b 2


5

'

M

,

x - $%

;

W )

,

9

6Z

X

3

X

,

'


\

S σ . ( 01r

,

B

6Z

L

3v
x
3

1
$% L
6N '
, ' @
dQ =

; θ

O

;

L


O $W X

3 :'

σ .2πrh .dh 2πσrh .dh
=
= 2πσR.dh.
cosθ
(rh / R )

S

; L

4

M V5

-

; L

= 67

4

-

O? p;


L


'
67
x O 6;
dE =

EJ

6= L
I

6
h

(

2
h

4πεε 0 r + h

'

)

2 3/ 2


L

.dQ =

=

- $
Y)
O X ; $# @

[ ( " z)

O@

/ hX
X
(

#
6

3v 3

R
=

;

L


0

σ
4εε 0

< . B ( P1 l% 8
z . C((
%
$M W

>

1

6Z

10 −9
= 28,2 (V / m)
4.1.8,86.10 −12

E=

&
\

,

O@

h2

σ .h.
σ
=
E = dE =
dh
2εε 0 R 2
2εε 0 R 2 2
0

ε = 1)

6N

h.2πσR.dh
4πεε 0 R 3

R

1

'

,

%
'

,
L
6N =


1

'

b 3V 1

O

,

'

6Z

X

,

6Z
z( .

\

q
l

@ dq = dx =

q

2 R 2 − R02

dx

dE
dE2
dE1
(

z

z(

V

rB

lf

,

6Z

= L dE1
'

M V5

3


dE

dE 2 p ,

n

J > %

3V
6Z

\
n

X

E

= L dE1 $#

Vf
n
&

J

O
> %
O@


\ %
,

6Z

dE
dE

O ]


dq

dE2 =
=

2

4πεε 0 r

. cos α =

qR0

(

4πεε 0l R02 + x 2

)


3/ 2

l/2

E = dE 2 =

(

dx

4πεε 0lR 0
HM@

4πεε 0 l(R 02 + x 2 )

cos α .dα =
−α 0

E=

α0

qR 0

α0

q

)


3/ 2

−l / 2

=

1
R0
q
.
. dx
2
2
2
2
4πεε 0 R0 + x
R0 + x l

q
4πεε 0lR 0

qR 0
R0

dx =
2
2
2
2
3/ 2

x = R tgα 4πεε l
cos
.(
R
+
R
tg
)
α
α
0 −α
0
0
0

0

[sin α ]

2.10 −7
≈ 6.103 (V / m)
4π .1.8,86.10 −12.3.0,1

P hX S = q
'
, W ;
$% &'
b H ; &'
6;
#

6Z
q
O
X
$

O

\

9

X σ

op,

6Z

W

S = q
X
3

'

,

S = q


6Z

3

op,

6Z

3

#

'

,

&

'

8 ' ^ '
W

,
,

,

6
W


\

X

;
Vf

S O X ^ n
6Z
X \
^ n ) %
O

S = q

9

X σ

@

σ
2εε 0

G
E2 =

9 Xσ
& >

S '
6Z
X
; S = q
<

O ^ n

G $% &'

E1 =

op,

α0
l
q
2q sin α 0
q
.
=
=
=
− α 0 4πεε 0lR 0 2πεε 0lR 0 2R 4πεε 0 RR 0

\

Vf

@ :V


%

'

$

Y?

σ
1
1−
2εε 0
1 + a 2 / b2

S = q
E = E1 − E2 =

G

T
σ

2εε 0 1 + a 2 / b 2

= 67

6N

W


@

'

,


+ hX
$4
X
, ' X 3 3K
q
X
& > ()Y
U L 6Z
- 3 3K J p
3 3K
3
% 34
$4 Q > " #
*( )
, ' < . B ( P1 l% 8
< 6N =
$M W
HN 3
H O S - >
6U

" H =
$M O

lf

S Q V

U T
W

S

HN 3
2 34
8

4 %

% HN 3
X & >
txV
V& Q V)
E.2πR0 .h =
E=

E

,

z( O 4


k $% &'

q0

εε 0

=

T

z(
O@

; HN 3 )

)

O

W

\

,

W

O S
O O 6

O

:

6Z

?
S

4

1 q1h
.
εε 0 l

q1
2πεε 0 R0l

% 34

$4

@

q1q2
1,7.10 −16.2.10 −7
F = Eq2 =
=
≈ 10−10 ( N )
−12

−3
2πεε 0 R0l 2π .1.8,86.10 .4.10 .1,5

0

,
6
X

E

6Z
b
# H

% 34

X S = q
% 34
, 6Z
H
; S = q
k

#
F1 =

Fi =

% 34


]

,

6Z

H

H

Fk =

3

S = q

Ei = Ek

,
&

#

'
&
; S = q

@


q Ei

#
F2 =

'

O

@

q Ek

'
F1 = F2

,

W

,

6Z

W

@

,
"



i9 )

% 34

B( hX

S = q
% 34

$"

9

J )
op,
op,

X

X

'

3

S = q

- 3


@

X

λ . C ( +1r

&

= 4

X

%

@

7

E=

S 3

,

6Z

O@

σ

2εε 0

8

W 3 3

@

σλL 2.10 −5.3.10 −6.1
=
≈ 3,4( N )
2εε 0 2.1.8,86.10 −12

l% 8
8 ' $# &
$" & >
%

if 7 6Z

8

S σ .B ( 01r B b
, W 1

q = λL

^

F = Eq =


, W O 9 X , '
W 3 X HN 3 3

- 3

3

% 34

B

7

, 3

% 34

6Z

i9 )

6

,

\
6Z
<


U L
N= H

O , 6Z
, '
\ <
@ ? < )

6Z

X

\

h $J &} $#

E = E1 + E2

; E1

%

E2

p\ E . ()

= > O@

V

,
,

'

6Z

v

X

,

6Z

3 < )
E1 = − E2

h

<

o

f 7 6Z



vB T

= 67

)h= >

#

6Z

q

<

\

S

%


o

,

6Z

vB T


v

X ; @

E1 = E 2
q1
4πεε 0 x

2

=

q2
4πεε 0 (l − x )

2

q
x
=± 1
l−x
q2
q1
q2

±l
x=

o


,

6Z



q1
q2

v

vB

A" < )
3J

q1

=

q1 ±
6N

BB Q

l

#


q1 + q2

h= >

x < 0 hay x > l

x=

' @
l

#

,
q1

q1 −

l

3K
4H
H
,
,
" ~ . *((i !% &'
6Z
X , 6Z
\
3 3K S

&
& '

V

E=

1

N= n < % @ " g &
, 6Z
h @
λ

2πεε 0 x

+

λ
l−x

=

λl
2πεε 0 x(l − x)

' @

q2


3

Vf 6Z
6Z
X

q1
q2

=

W @

q1

x=

B A" < )
q2

2

q1
(l − x )
q2

x=±

h= >


0< x
x
l−x

%
" 3,
- & >

X & >
^ 3
%

>

[

%

\

. *
. ()
HN 3

h "

4 3


6Z
S X
d V% 8
$" #
%

3K

5

J


; λ

9

X

, 3

3

hS & % @

3~ . v3V
l−r
1
λ l −r 1
λ

[ln x − ln(l − x )] = λ ln l − r
+
dx =
2πεε 0 r x l − x
2πεε 0
r
πεε 0
r

U = − Edx =

πεε 0U

λ=

ln



$\
E=

l −r
r

5

1

6Z

l

l
2πεε 0 l
. l−
2
2

HM@

E=

BC 1
X

O@ 1

,

6Z

πεε 0U

.

ln

=

l−r

r

V . rB)

O@

2U
l−r
l. ln
r

2.1500
≈ 4.103 (V / m )
0,149
0,15. ln
0,001

, '
, &

G

X

< . B ( /1) \
'
\
,


( /1 S %
6Z
q

(
M

-

G

]J

q1

A = q2

HM@
[

A=

\

,

'

0(


, &

38

\

,


'

\

e "

e . i9 @

'
,

4πεε 0 r

(



q2

l.q1q2
=
4πεε 0 (l + r )
4πεε 0 r (l + r )

)

0,9. − 10 −6 .2.10 −6
≈ −0,162( J )
4π .1.8,86.10 −12.0,1.1

L

,

X

\ 6
V

,

'

<

\

! @


OV


BY

'

L

< > L
O

1

'

9

X

-

" \ 38
, $% &'

G

.


, &

38

X

\ h %
!" < > L

B

S σ . ( 1r

,

X , ' < . : rC? ( P1 [
X & > z. (
V

\

\

,

'

@

e . < :ie • i!?

i9 @

A = q.

=

HM@

A=

B* hX k
" @
B hX

1
3<

3

\

h

k

4πεε 0 R1

=

4πεε 0 R2


"3

(

)

k $% &'

Y

4

4πεε 0 R1

(do R2 = ∞)

2

k

'

,

3 ) %

h

4


k

W

-

T

;

k

b3

3 ) %

-

k

4πεε 0 R 2 + h 2

> k

h @

k

dq

2

4πεε 0 R + h

: .(?@

2

=

,

3

dq

V = dV =

"

qQ

10 −7.(1 / 3).10 −7. 10 −2
≈ 3,42.10 − 7 (J )
−12
−2
1.8,86.10 .11.10

dV =


p,

Q

3
\

p,



q.4π .r 2 .σ
σqr 2
=
4πεε 0 (r + R ) εε 0 (r + R )

3

k

Q

Q
4πεε 0 R 2 + h 2

,
3

'


s . : r0? ( +1

X

.C

'

3< p ,
X

"3
@

'

,

,

'


VO =

B p,

"

4πεε 0 R


=

h: .C
VH =

(1 / 9).10−8
4π .1.8,86.10 −12.4.10 − 2

?@

Q
4πεε 0 R 2 + h 2

(1 / 9).10−8

=

4π .1.8,86.10 −12

(4.10 ) + (3.10 )
−2 2

−2 2

= 200(V )

3

'

)

B

.B )&
- 3

,
,

W
'
O

X
38
,

3e . < 3i

dA = q.(− Edr ) = −q.

A = dA = −

λ=

i9 @

λ=


BP
X
:

= 250(V )

'
\ < . :BrC? ( 01 #
%
X HN 3
. Y R 36; % 34
,
6Z 3 HN 3
6;
6Z H5
, 6Z
" & >
%
P
9 X , 3
,
X
e . *( ( € '

B/ hX
,
& >
\
6Z


O@

Q

,


2πεε 0

λ
dr
2πεε 0 r

r2

r1

dr

=−
(ln r2 − ln r1 ) = qλ ln r1
2πεε 0 r2
r
2πεε 0

2πεε 0 A
r
q. ln 1
r2
2.π .1.8,86.10 −12.50.10 −7

≈ 6.10 − 7 (C / m )
4
−9
(2 / 3).10 . ln
2

&
, O \ O X
6Z
>& > &
n ) ' 34 6
n
? 6N &


6Z
= 67

G
O

,
,

= 67
- % f 7 6Z
6Z
&
n
6

% 8
O ; % f 7 ,
6Z


E

e

!

E
]

lf

6Z

&'

9

1

6

I)

O@


dV = − E.dl

VA − VA = −

E.dl
ABCDA

=−

E.dl + E.dl + E.dl + E.dl
AB

BC

CD

DA

= −(E1 .AB + 0 − E 2 .CD + 0)
= (E 2 − E1 )l = 0
i9 @ A" = 67
&
n
B+

'
X
6Z

- f 7 6Z

$X &

,
"
\ e
N= H @

$U
O $#

X
`

,

6Z
O ,

X < > L 3K
n
%
,

X

\

#

B


X

\

#

< > L

C

X

\

#

< > L

&
6Z

n

% 8 6

,
"3

[


S -

O

, < $#
%
, '
\

< > L
%

$W

X

$#

O w
W$
,
)

= >

"
%



z
V

x

1

< > L

k
6N '

r = R2 − h2

,

;

dq = σ .dS = σ .

;

O

S

cos α =

'


67
6

r
R

$
I @

,

"3

3

B*)

X

4

,

"3

,

S σ=

-


k

4πεε 0 r 2 + (h + x )

>

,

O ]a

2

S L

=

2

#
V=

=2

q

+ x + 2 hx

< > L :V . (?


\

k

3

@

=

x

X & >

qdh
8πεε 0 R R 2 + x 2 + 2hx

@

( R + x − R − x ) = 4πεεq 0 R
=
8πεε 0 xR
4πεε 0 x

"

e %

8πεε 0 R r 2 + h 2 + x 2 + 2hx


q

B p,

-

b $% &'

J @

\

q.dh

V=

T

'

q.dh

2
2
t=R
− R8πεε 0 R R + x + 2hx

"

W 3L 3


q
p,
4πR 2

3

q

p,

O

q
q.dh
.2πR.dh =
2
4πR
2R

dq

R

V = dV =

9

'


2πr.dh
cos α

dq =

dV =

i9 )

k

3

e

(R+ x)2

16πεε 0 xR ( R − x ) 2

( R + x) 2
dt
q
=
.2 t
t 16πεε 0 xR
(R − x )2

[ ]

(x ≤ R )

(x > R )
S L :V . z?@

q
4πεε 0 R

< > L ) %
q
4πεε 0 (R + a )

S L

X & >

:V . z o ?@

V


B0

1

'

,

"

X


\

G

X &

>

pG

O $% &'

G
,

'

dq

"3

4πεε 0 x 2 + h 2

> G

V = dV =
0

σ

2εε 0

C( ` >
&
$>

X
9

X

G

k
,

& { $% &'
$
B*) ,
2πσxdx
4πεε 0 x 2 + h 2

=

,

-

V) $W X
"3


3V _ L
& {

%

& {
@

σxdx
2εε 0 x 2 + h 2

σxdx
2εε 0 x 2 + h 2

(R
%

2

+ h2 − h

=2

t = x +h2

σ
4εε 0

R2 +h2


h

2

R 2 + h2
dt
σ
2 t
=
t 4εε 0
h2

[ ]

)

$> 4 ,
3 . * ) 6Z
X ,
6Z
$>
$ 3g
6Z H5 - , 6Z
[
$# / ( ir hX
$> &
- 4 , ; 9 M $
L $# &
9 M O$

; $>
5
- 4 , Q > " $b < >
6U
- g
Y

n
H
&

,

6Z

M

@ e . ~ . v3

hS & % @

A=

v2 =

W

S σ

6Z


1

'

@
R

i9 @ V =

=

z)

= L
dq = σ .dS = σ .2πxdx
dV =

p,

4

1
1
1
mv 22 − mv12 = mv 22
2
2
2


( 3 v1 = 0)

2A
2eEd
2.1,6.10 −19.6.10 4.5.10 −2
=
=
≈ 3,26.107 (m / s )
−31
m
m
9,1.10