Tải bản đầy đủ (.pdf) (1 trang)

Economic growth and economic development 78

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (138.07 KB, 1 trang )

Introduction to Modern Economic Growth
Proposition 2.5. Suppose that Assumptions 1 and 2 hold, then the steady-state
equilibrium of the Solow growth model described by the difference equation (2.16) is
globally asymptotically stable, and starting from any k (0) > 0, k (t) monotonically
converges to k ∗ .
Proof. Let g (k) ≡ sf (k) + (1 − δ) k. First observe that g 0 (k) exists and is

always strictly positive, i.e., g0 (k) > 0 for all k. Next, from (2.16), we have
(2.26)

k (t + 1) = g (k (t)) ,

with a unique steady state at k∗ . From (2.17), the steady-state capital k∗ satisfies
δk∗ = sf (k∗ ), or
(2.27)

k∗ = g (k ∗ ) .

Now recall that f (·) is concave and differentiable from Assumption 1 and satisfies
f (0) ≥ 0 from Assumption 2. For any strictly concave differentiable function, we
have

(2.28)

f (k) > f (0) + kf 0 (k) ≥ kf 0 (k) ,

where the second inequality uses the fact that f (0) ≥ 0. Since (2.28) implies that
δ = sf (k∗ ) /k ∗ > sf 0 (k∗ ), we have g 0 (k∗ ) = sf 0 (k∗ ) + 1 − δ < 1. Therefore,
g0 (k∗ ) ∈ (0, 1) .
Corollary 2.1 then establishes local asymptotic stability.
To prove global stability, note that for all k (t) ∈ (0, k ∗ ),


k (t + 1) − k∗ = g (k (t)) − g (k∗ )
Z k∗
= −
g0 (k) dk,
k(t)

< 0

where the first line follows by subtracting (2.27) from (2.26), the second line uses
the fundamental theorem of calculus, and the third line follows from the observation
64



×