Tải bản đầy đủ (.pdf) (1 trang)

Economic growth and economic development 70

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (187.55 KB, 1 trang )

Introduction to Modern Economic Growth

output

δk(t)
f(k(t))

f(k*)
consumption

sf(k(t))

sf(k*)

investment

0

k*

k(t)

Figure 2.4. Investment and consumption in the steady-state equilibrium.
the capital-labor ratio k∗ ∈ (0, ∞) is given by (2.17), per capita output is given by
(2.18)

y ∗ = f (k∗ )

and per capita consumption is given by
(2.19)


c∗ = (1 − s) f (k∗ ) .

Proof. The preceding argument establishes that (2.17) any k∗ that satisfies
(2.16) is a steady state. To establish existence, note that from Assumption 2 (and
from L’Hopital’s rule), limk→0 f (k) /k = ∞ and limk→∞ f (k) /k = 0. Moreover,

f (k) /k is continuous from Assumption 1, so by the intermediate value theorem

(see Mathematical Appendix) there exists k∗ such that (2.17) is satisfied. To see
uniqueness, differentiate f (k) /k with respect to k, which gives
w
∂ [f (k) /k] f 0 (k) k − f (k)
=
= − 2 < 0,
(2.20)
2
∂k
k
k
where the last equality uses (2.14). Since f (k) /k is everywhere (strictly) decreasing,
there can only exist a unique value k∗ that satisfies (2.17).
56



×