Tải bản đầy đủ (.pdf) (3 trang)

Bài tập CALCULUS 90

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.05 MB, 3 trang )

Created by T. Madas
Question 297

(*****)

The points A and B are stationary points of the curve with equation
y = 2 x 3 + 3 x 2 − 12 x + k , x ∈ » ,
where k is a constant.
Given that y = 37 at the point of inflexion of the curve, show that the area of the
2
region bounded by the curve and the straight line through A and B is 5 1 .
16

SP-M , proof

Created by T. Madas


Created by T. Madas
Question 298

(*****)

A quadratic curve has equation
y = ax 2 + bx + c , a ≠ 0 ,
where a , b and c are constants.
The curve meets the x axis at A ( −2,0 ) and has a maximum point at B ( 0,1) .
The point C lies on the curve so that AB is perpendicular to BC .
Determine the area of the finite region bounded by the curve and the straight line
segment AC .


SP-U , proof

Created by T. Madas


Created by T. Madas
Question 299

(*****)

The rate of change, with respect to x , of the gradient of a curve is constant.
The curve passes through the points with coordinates (1, 2 ) and ( −3,0 ) , the gradient at
the former point being − 1 .
2
Show that the area of the finite region bounded between the curve and the straight line
125
with equation y = 2 x is
.
3

SP-A , proof

Created by T. Madas



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×