Tải bản đầy đủ (.pdf) (3 trang)

Bài tập CALCULUS 89

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (846.64 KB, 3 trang )

Created by T. Madas
Question 294

(*****)

The point P lies on the curve with equation y = x 2 , x > 0 .
The finite region bounded by the curve, the tangent to the curve at P and the y axis
has area of 72 square units.
Determine the x coordinate of P .

SP-I , 6

Created by T. Madas


Created by T. Madas
Question 295 (*****)

y
f ( x ) = x 2 − 3x + 18

P

O
1

x

A quadratic curve has equation
y = x 2 − 3 x + 18 , x ∈ » .


The tangent to the curve at the point P meets the x axis at the point with coordinates
(1,0 ) , as shown in the figure above.
Find the area of the finite region bounded by the curve, the coordinates axes and the
tangent to the curve at P , shown shaded in figure above.

MP1-S , area =

Created by T. Madas

229
6


Created by T. Madas
Question 296

(*****)

The curve with equation y = f ( x ) , lies entirely in the first quadrant. The point P ,
whose x coordinate is a lies on this curve.
The tangent to the curve at P meets the x axis at the point A and the y axis at the
point C .
The normal to the curve at P meets the x axis at the point B and the y axis at the
point D .
Given further that the gradient at P is positive, show that the difference between the
areas of the triangle PAB and the triangle PCD is given by
2

1 +  f ′ ( a ) 
2

 f ( a )  − a 2 .
2 f ′( a )

SP-G , proof

Created by T. Madas



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×