Tải bản đầy đủ (.pdf) (3 trang)

Bài tập CALCULUS 83

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (692.35 KB, 3 trang )

Created by T. Madas
Question 276

(*****)
y

L

Q ( 8,5 )
d
P

R

x

O

The straight line L has equation 3x + 2 y = 8 .
The point P ( x, y ) lies on L and the point Q ( 8,5 ) lies outside L . The point R lies on

L so that QR is perpendicular to L . The length PQ is denoted by d .
a) Show clearly that
d 2 = 65 − 13 x + 13 x 2 .
4

Let f ( x ) = 65 − 13 x + 13 x 2 .
4

b) Use differentiation to find the stationary value of f ( x ) , fully justifying that
this value of x minimizes the value of f ( x ) .



c) State the coordinates of R and find, as an exact surd, the shortest distance of
the point Q from L

x = 2 , R ( 2,1) ,

Created by T. Madas

52


Created by T. Madas
Question 277

(*****)

y

y = 3x − 6
B

O

x

y = 4 x − x2

A

The figure above shows the graph of the curve C with equation


y = 4x − x2 ,
intersected by the straight line L with equation
y = 3x − 6 .

The finite region R is bounded by C and L .
Show that the area of R , shown shaded in the above figure, is 125 .
6

MP1-X , proof

Created by T. Madas


Created by T. Madas
Question 278

(*****)

An open box is to be made of thin sheet metal, in the shape of a cuboid with a square
base of length x and height h .
The box is to have a fixed volume.
Determine the value of x , in terms of h , when the surface area of the box is minimum.

MP1-S , proof

Created by T. Madas




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×