Tải bản đầy đủ (.pdf) (3 trang)

Bài tập CALCULUS 67

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (420.09 KB, 3 trang )

Created by T. Madas
Question 231

(****)
y
f ( x) =

x+4
x

M

R
O
1

N

x

The figure above shows the curve C with equation
f ( x) =

x+4
, x>0.
x

a) Determine the coordinates of the minimum point of C , labelled as M .
The point N lies on the x axis so that MN is parallel to the y axis. The finite region
R is bounded by C , the x axis, the straight line segment MN and the straight line
with equation x = 1 .



b) Use the trapezium rule with 4 strips of equal width to estimate the area of R .
c) Use integration to find the exact area of R .
d) Calculate the percentage error in using the trapezium rule to find the area of R .
e) Explain with the aid of a diagram why the trapezium rule overestimates the area
of R .

C2R , M ( 4, 4 ) , area ≈ 12.7344... , area = 38 , 0.53%
3

Created by T. Madas


Created by T. Madas
Question 232

(****)

The curve C with equation y = f ( x ) passes through the point P (16, −5 ) , and its
gradient function f ′ ( x ) is given by
f ′( x ) =

x−6
, x>0.
x

a) Find an equation of the tangent to C at P .
b) Determine an equation of C .
The point Q lies on C and the gradient of C at that point is −1 .


c) Find the coordinates of Q .
3

1

(

C1U , 2 y = 5 x − 90 , y = 2 x 2 − 12 x 2 + 1 , Q 4, − 55
3
3
3

Created by T. Madas

)


Created by T. Madas
Question 233

(****)

y = x2 − 1

y

1 

y = 9 1 − 2 
 x 


R
O

x

The figure above shows the graphs of the curves with equations
y = x 2 − 1 and

1 

y = 9 1 − 2  .
 x 

The finite region R is bounded by the two curves in the 1st quadrant, and is shown
shaded in the figure above.
Determine the exact area of R .

C2V , 16
3

Created by T. Madas



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×