Tải bản đầy đủ (.pdf) (3 trang)

Bài tập CALCULUS 65

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (616.58 KB, 3 trang )

Created by T. Madas
Question 224

(****)

f ( x ) = x3 + x 2 − x + 15 , x ∈ »
a) Show that ( x + 3) is a factor of f ( x ) .
The figure below shows the curve C with equation y = f ( x ) .

y
A

B

y = f ( x)

R
O

x

The points A and B are stationary points of C .

b) Find the exact coordinates of A and B .
The finite region R is bounded by the curve, the x axis and the straight line segment
OA , where O is the origin.

c) Determine the exact area R .

(


)

C2G , A ( −1,16 ) , B 1 , 400 , area = 92
3 27
3

Created by T. Madas


Created by T. Madas
Question 225

(****)

The curve C has equation
y=

1
2 x2

+

4
3x3

, x>0.

Show clearly that
x2


d2y
dx

2

+ 6x

dy
+ 6y = 0 .
dx

C1T , proof

Question 226

(****)
f ( x) ≡ x +

8
x2

, x>0.

Find the range of values of x , for which f ( x ) is increasing.

x>4

Created by T. Madas



Created by T. Madas
Question 227

(****)

y
L
R

O

y = 1 x2 − 9 x + 7
2
2

P

Q

x

The diagram above shows the quadratic curve C with equation
y = 1 x2 − 9 x + 7 .
2
2
The curve crosses the x axis at the points P and Q , and the y axis at the point R .
The line L is the tangent to C at the point P .

a) Find an equation of L .
b) Find the exact area of the shaded region bounded by the tangent at P , the curve

and the y axis.

2 y + 5 x = 10 , area = 4
3

Created by T. Madas



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×