Tải bản đầy đủ (.pdf) (3 trang)

Bài tập CALCULUS 57

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (420.8 KB, 3 trang )

Created by T. Madas
Question 200

(****)

f ( x ) = x2 +

16
, x ≠ 0.
x

The curve C has equation y = f ( x ) .
Show that C has two turning points, of which one is stationary, and the other is a non
stationary point of inflection.
Determine the exact coordinates of each point.
point of inflection at

Created by T. Madas

( 3 −16,0) , min ( 2,12)


Created by T. Madas
Question 201

(****)

y
M

y = 8x − x2


O
A

x

The figure above shows the quadratic curve with equation

y = 8x − x2 , x ∈ » .
The point M is the maximum point of the curve and the point A is one of the curve’s
x intercepts.
Find the exact area of the shaded region, bounded by the curve, the x axis and the
straight line segment from A to M .

C2J , area = 224
3

Created by T. Madas


Created by T. Madas
Question 202

(****)

The point P , whose x coordinate is 1 , lies on the curve with equation
4

y=

k + 4x x

, x∈» , x > 0 ,
7x

where k is a non zero constant.

a) Determine, in terms of k , the gradient of the curve at P .
The tangent to the curve at P is parallel to the straight line with equation

44 x + 7 y − 5 = 0 .
b) Find an equation of the tangent to the curve at P .

MP1-Q ,

dy
dx

Created by T. Madas

=
x = 14

4 − 16k
, 44 x + 7 y = 25
7



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×