Tải bản đầy đủ (.pdf) (3 trang)

Bài tập CALCULUS 56

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (507.85 KB, 3 trang )

Created by T. Madas
Question 197

(****)

The cubic curve with equation

y = ax3 + bx 2 + cx + d ,
where a , b , c are non zero constants and d is a constant, has one local maximum
and one local minimum.
Show clearly that

b 2 > 3ac
SYN-B , proof

Created by T. Madas


Created by T. Madas
Question 198

(****)
y

L1

y = 2 x2 − x + 3
Q
P
R
O



x

L2

The figure above shows the curve C with equation

y = 2 x2 − x + 3 .
C crosses the y axis at the point P . The normal to C at P is the straight line L1 .

a) Find an equation of L1 .
L1 meets the curve again at the point Q .

b) Determine the coordinates of Q .
The tangent to C at Q is the straight line L2 .

L2 meets the y axis at the point R .

c) Show that the area of the triangle PQR is one square unit.

C1B , y = x + 3 , Q (1, 4 )

Created by T. Madas


Created by T. Madas
Question 199

(****)


The figure below shows the design of a hazard warning logo which consists of three
identical sectors of radius r cm, joined together at the centre.
Each sector subtends an angle θ radians at the centre and the sectors are equally
spaced so that the logo has rotational symmetry of order 3 .

θ
r

The area of the logo is 75 cm 2 .

a) Show that the perimeter P cm of the logo is given by

P = 6r +

150
.
r

b) Determine by differentiation the value of r for which P is stationary.
c) Show that the value of r found in part (b) gives the minimum value for P .
d) Find the minimum perimeter of the feeder.

r = 5 , Pmin = 60

Created by T. Madas



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×