Tải bản đầy đủ (.pdf) (3 trang)

Bài tập CALCULUS 39

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (729.32 KB, 3 trang )

Created by T. Madas
Question 146

(***+)

x

x

x

θ
x

x

A wire of total length 60 cm is to be cut into two pieces. The first piece is bent to form
an equilateral triangle of side length x cm and the second piece is bent to form a
circular sector of radius x cm . The circular sector subtends an angle of θ radians at
the centre.

a) Show that
xθ = 60 − 5 x .
The total area of the two shapes is A cm 2 .

b) Show clearly that
A=

1
4


(

)

3 − 10 x 2 + 30 x .

c) Use differentiation to find the value of x for which A is stationary.
d) Find, correct to three significant figures, the maximum value of A , justifying
the fact that it is indeed the maximum value of A .
SYN-F , x ≈ 7.26 , Amax ≈ 109

Created by T. Madas


Created by T. Madas
Question 147

(***+)

y
2

y = 2x 3 − x

A

O

x


The figure above shows part of the curve with equation
2

y = 2x 3 − x , x ≥ 0 .
The curve meets the x axis at the point A .

a) Show that the coordinates of A are ( 8,0 ) .
b) Find the exact area of the finite region bounded by the curve and the x axis .

area = 32
5

Created by T. Madas


Created by T. Madas
Question 148

(***+) non calculator

y=

2 − 3x x
1
+
, x >0.
3x
2

a) Find an expression for


dy
.
dx

b) Show that the value of

d2y
5
where x = 4 , is
.
2
dx
96
dy
2
1 −1
= − x −2 − x 2
dx
3
2

Created by T. Madas



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×