Tải bản đầy đủ (.pdf) (3 trang)

Bài tập CALCULUS 34

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (640.76 KB, 3 trang )

Created by T. Madas
Question 128

(***+)

The curve C has equation

(

)

y = ( x − 2) x2 − 2 x − 3 , x ∈ » .
a) Sketch the graph of C , indicating the coordinates of any points where the curve
meets the coordinate axes.
b) Find an equation of the tangent to C at the point P , where P is the point
where C crosses the y axis.
The point Q lies on C so that the tangent to the curve at Q is parallel to the tangent to
the curve at P .

c) Determine the exact coordinates of Q .

( −1,0 ) , ( 2,0 ) , ( 3, 0 ) , ( 0,6 ) ,

Created by T. Madas

(

y = x + 6 , Q 8 , − 22
3 27

)




Created by T. Madas
Question 129

(***+) non calculator
f ( x) = 4 x − 3 x , x ≥ 0 .

Show clearly that
f ′ ( 64 ) =

11
.
48
proof

Question 130

(***+)

The curve C has equation
y = 2 x − x3 , x ≥ 0 .
Show that the equation of the tangent to C at the point where x = 2 , can be written as
y = 2 (2 − x)
proof

Created by T. Madas


Created by T. Madas

Question 131

(***+)

θ
x

x

A circular sector of radius x cm subtends an angle of θ radians at the centre.
The area of the sector is 36 cm 2 and its perimeter is P cm .

a) Show clearly that
P = 2x +

72
.
x

b) Find the minimum value of P , fully justifying the fact that it is a minimum.
c) Deduce the value of θ when P is minimum.
SYN-R , Pmin = 24 , θ = 2c

Created by T. Madas



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×