Tải bản đầy đủ (.pdf) (3 trang)

Bài tập CALCULUS 33

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (782.92 KB, 3 trang )

Created by T. Madas
Question 123

(***+)
3
−1
f ( x ) =  x 2 − 2  x 2 + 1 , x > 0




Find the exact value of f ′ ( 4 ) .
f ′ ( 4 ) = 33
8

Question 124

(***+)

The curve C has equation
y=

A
+8 x , x > 0,
x

where A is a non zero constant.
4
The normal to the curve at C , at the point where x = 4 , has gradient − .
3
Find the value of A .


A = 20

Created by T. Madas


Created by T. Madas
Question 125

(***+)

Find the exact value of



2

1

(3 + 2 x )

2

dx ,

giving the answer in the form a + b 2 , where a and b are integers.

7 + 16 2

Question 126


(***+)

A cubic curve C passes through the points P ( −1, −9 ) and Q ( 2,6 ) and its gradient
function is given by
dy
= 3 x 2 + kx + 7 ,
dx
where k is a non zero constant.
Find an equation for C .
C1Z , y = x3 − 5 x 2 + 7 x + 4

Created by T. Madas


Created by T. Madas
Question 127

(***+)

y
C

y = 8 + 4 x − 2 x 2 − x3

A

O

x


B

The figure above shows part of the curve with equation

y = 8 + 4 x − 2 x 2 − x3 .
The curve meets the x axis at A and B .

a) Verify that the coordinates of A are ( −2,0 ) and hence use algebra to show that
the coordinates of B are ( 2,0 ) .
The point C is a stationary point of the curve.

b) Use calculus to determine the exact coordinates of C .
c) Find the exact area of the finite region bounded by the curve and the x axis.

(

)

C2E , C 2 , 256 , area = 64
3 27
3

Created by T. Madas



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×