Tải bản đầy đủ (.pdf) (3 trang)

Bài tập CALCULUS 32

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (644.03 KB, 3 trang )

Created by T. Madas
Question 119

(***+) non calculator

The curve C has equation
y = 4x − x , x ≥ 0 .
Find the coordinates of the stationary point of C , and determine its nature.

(

min 1 , − 1
64 16

Question 120

)

(***+)
1
 x − 12 − 3  , x > 0 .
f ( x ) =  x 2 − 4 





Show clearly that




3

f ( x ) dx = P x + Qx + Rx 2 + C ,

where P , Q and R are integers to be found, and C is an arbitrary constant.
P = −8 , Q = 13 , R = −2

Created by T. Madas


Created by T. Madas
Question 121

(***+)
f ( x ) ≡ x3 − 2 x 2 − x − 6 , x ∈ » .

a) Use the factor theorem to show that ( x − 3) is a factor of f ( x ) .
b) Hence express f ( x ) as the product of a linear and a quadratic factor.
The curve C has equation

y = 3x 4 − 8 x3 − 6 x 2 − 72 x + 240 .
c) Show that C has a single stationary point, and determine its coordinates and its
nature.

(

)

C2V , f ( x ) ≡ ( x − 3 ) x 2 + x + 2 , min ( 3, −3)


Created by T. Madas


Created by T. Madas
Question 122

(***+)

y

y = x 2 − 8 x + 18

Q ( 8,18)
P ( 2,6 )
x

O

The figure above shows the parabola with equation

y = x 2 − 8 x + 18 , x ∈ » .
The points P ( 3,3) and Q ( 6,6 ) both lie on the parabola.
Find the exact of the shaded region, bounded by the curve and the straight line segment
between P and Q .
SYN-R , area = 36

Created by T. Madas




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×