Tải bản đầy đủ (.pdf) (3 trang)

Bài tập CALCULUS 28

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (606.15 KB, 3 trang )

Created by T. Madas
Question 106

(***+)

The curve C has equation

y = x3 − 9 x 2 + 24 x − 19 , x ∈ » .
a) Show that the tangent to C at the point P , where x = 1 , has gradient 9 .
b) Find the coordinates of another point Q on C at which the tangent also has
gradient 9 .
The normal to C at Q meets the coordinate axes at the points A and B .

c) Show further that the approximate area of the triangle OAB , where O is the
origin, is 11 square units.
Q ( 5,1)

Created by T. Madas


Created by T. Madas
Question 107

(***+)

y

y = x2 − 6 x + 5

C ( 7,12 )


O A

B

x

The diagram above shows the curve with equation

y = x2 − 6 x + 5 .
The point C ( 7,12 ) lies on the curve while A and B are the points of intersection of
the curve and the x axis.
Find the exact area of the shaded region, bounded by the curve, the straight line
segment AC and the x axis.
C2M , area = 76
3

Created by T. Madas


Created by T. Madas
Question 108

(***+)
1

y=

x 2 (3 x 2 + 1)
x2


, x >0.

Show clearly that



4

y dx = 15 .

1

proof

Question 109

(***+)

The gradient of every point on the curve C , with equation y = f ( x ) satisfies
f ′ ( x ) = 3x 2 − 4 x + k ,
where k is a non zero constant.
The points P ( 0, −3) and Q ( 2,7 ) both lie on C .
Find an equation for C .
y = x3 − 2 x 2 + 5 x − 3

Created by T. Madas




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×