Tải bản đầy đủ (.pdf) (3 trang)

Bài tập CALCULUS 26

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (547.48 KB, 3 trang )

Created by T. Madas
Question 99

(***+)

y = − x2 + 8x − 2

y

y = x 2 − 10 x + 26

A
B

R
O

x

The figure above shows the graphs of the curves with equations

y = − x 2 + 8 x − 2 and

y = x 2 − 10 x + 26 .

The two curves intersect each other at the points A and B .
The finite region R bounded by the two curves is shown shaded in the figure above.
Show that the area of R is exactly 125 .
3
C2L , proof


Created by T. Madas


Created by T. Madas
Question 100

(***+)

25x

15x

y
20x

The figure above shows a solid triangular prism with a total surface area of 3600 cm 2 .
The triangular faces of the prism are right angled with a base of 20x cm and a height
of 15x cm . The length of the prism is y cm .

a) Show that the volume of the prism, V cm3 , is given by
V = 9000 x − 750 x3 .

b) Find the value of x for which V is stationary.
c) Show that the value of x found in part (b) gives the maximum value for V .
d) Determine the value of y when V is maximum.
C2D , x = 2 , y = 20

Created by T. Madas



Created by T. Madas
Question 101

(***+)

The curve C has equation
y = ax −

b
x2

, x ≠ 0,

where a and b are non zero constants.
The gradient of C at the points where x = 1 and x = −2 is 14 and 5 , respectively.
Find the value of a and the value of b .
a = 6, b = 4

Question 102

(***+)
f ′( x) = 5 −

8
x2

, x ≠ 0.

Find the value of f ( 4 ) , given that 2 f (1) = 4 + f ( 2 ) .
C1X , f ( 4 ) = 14


Created by T. Madas



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×