Tải bản đầy đủ (.pdf) (3 trang)

Bài tập CALCULUS 23

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (816.61 KB, 3 trang )

Created by T. Madas
Question 88

(***+)

r

h

The figure above shows a closed cylindrical can of radius r cm and height h cm .

a) Given that the surface area of the can is 192π cm 2 , show that the volume of the
can, V cm3 , is given by
V = 96π r − π r 3 .

b) Find the value of r for which V is stationary.
c) Justify that the value of r found in part (b) gives the maximum value for V .
d) Calculate the maximum value of V .
MP1-K , r = 4 2 ≈ 5.66 , Vmax = 256π 2 ≈ 1137

Created by T. Madas


Created by T. Madas
Question 89

(***+)

The curve C has equation

y = 2 x3 − 9 x 2 + 12 x − 10 .


a) Find the coordinates of the two points on the curve where the gradient is zero.
The point P lies on C and its x coordinate is −1 .

b) Determine the gradient of C at the point P .
The point Q lies on C so the gradient at Q is the same as the gradient at P .

c) Find the coordinates of Q .
C1G , (1, −5 ) , ( 2, −6 ) , 36 , Q ( 4, 22 )

Created by T. Madas


Created by T. Madas
Question 90

(***+)

The gradient function at every point on a curve C is given by
dy
= ( kx − 3) x ,
dx

where k is a non zero constant.
The point P ( 4, 40 ) lies on C and the gradient at P is 34 .
Determine an equation of C .
5

3

C1V , y = 2 x 2 − 2 x 2 − 8


Created by T. Madas



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×