Tải bản đầy đủ (.pdf) (3 trang)

Bài tập CALCULUS 21

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (944.44 KB, 3 trang )

Created by T. Madas
Question 82

(***)

The curve C with equation y = f ( x ) satisfies
f ′( x) = −

4
x2

, x ≠ 0.

a) Given that f (1) = 2 , find an expression for f ( x ) .
b) Sketch the graph of f ( x ) , indicating clearly the asymptotes of the curve and
the coordinates of any points where the curve crosses the coordinate axes.
C1D , f ( x ) =

Created by T. Madas

4
−2 ,
x

( 2,0 )


Created by T. Madas
Question 83

(***)



The total cost C , in £ , for a certain car journey, is modelled by
C=

200 2V
+
, V > 30 ,
V
25

where V is the average speed in miles per hour.

a) Find the value of V for which C is stationary.
b) Justify that this value of V minimizes C .
c) Hence determine the minimum total cost of the journey.
C2J , V = 50 , £8

Created by T. Madas


Created by T. Madas
Question 84

(***)

x

A
y B


G
F

1c

E
x

y C
D

The figure above shows a clothes design consisting of two identical rectangles attached
to each of the straight sides of a circular sector of radius x cm .
The rectangles measure x cm by y cm and the circular sector subtends an angle of
one radian at the centre.
The perimeter of the design is 40 cm .

a) Show that the area of the design, A cm 2 , is given by
A = 20 x − x 2 .

b) Determine by differentiation the value of x for which A is stationary.
c) Show that the value of x found in part (b) gives the maximum value for A .
d) Find the maximum area of the design.
SYN-H , x = 10 , Amax = 100

Created by T. Madas




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×