Tải bản đầy đủ (.pdf) (3 trang)

Bài tập CALCULUS 11

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.06 MB, 3 trang )

Created by T. Madas
Question 42

(***)

A curve C has the following equation
f ( x ) = 4x x −

25 x 2
, x≥0.
16

a) Find a simplified expression for f ′ ( x ) .
b) Determine an equation of the tangent to the curve at the point where x = 4 ,
giving the answer in the form ax + by = c , where a , b and c are integers.
1

C1I , f ′ ( x ) = 6 x 2 − 25 x , x + 2 y = 18
8

Question 43

(***)

The curve C has equation

y = x3 − 6 x 2 + 12 x − 5 .
Find the coordinates of the stationary point of C and use a clear method to determine
its nature.
C2M , point of inflexion at


Created by T. Madas

( 2,3)


Created by T. Madas
Question 44

(***)

f ( x) =

(

5 x 3x 2 − 2
x

) , x >0.

Show clearly that



5

f ( x ) dx = P x + Qx 2 + C ,

where P and Q are integers to be found, and C is an arbitrary constant.
P = −20 , Q = 6


Question 45

(***)

The point P ( 3,0 ) lies on the curve C whose gradient function is given by
dy
= 3 x 2 − 14 x + 12 .
dx

a) Find an equation of the tangent to C at the point P .
The point Q lies on C , so that the tangent at Q is parallel to the tangent at P .

b) Find the x coordinate of Q .
y = 9 − 3x , x = 5
3

Created by T. Madas


Created by T. Madas
Question 46

(***)

y

y = −4 x 2 + 24 x − 20

x


O

A

B
2

y = x − 6x + 5

The figure above shows the graph of the curves with equations

y = −4 x 2 + 24 x − 20 and

y = x2 − 6 x + 5 .

The two curves intersect each other at the points A and B .
The finite region R bounded by the two curves is shown shaded in the figure.
Find the exact area of R .
SYN-D , 160
3

Created by T. Madas



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×