TRƯỜNG ĐẠI HỌC HÙNG VƯƠNG
KHOA TOÁN TIN
-----------------------
LÊ THỊ LAN HƯƠNG
RÈN LUYỆN CHO HỌC SINH NĂNG LỰC PHÁT HIỆN VÀ GIẢI
QUYẾT VẤN ĐỀ THƠNG QUA DẠY HỌC CHỦ ĐỀ
“PHƯƠNG TRÌNH LƯỢNG GIÁC’’
KHĨA LUẬN TỐT NGHIỆP ĐẠI HỌC
Ngành: Sư phạm Tốn
Phú Thọ, 2018
TRƯỜNG ĐẠI HỌC HÙNG VƯƠNG
KHOA TOÁN TIN
-----------------------
LÊ THỊ LAN HƯƠNG
RÈN LUYỆN CHO HỌC SINH NĂNG LỰC PHÁT HIỆN VÀ GIẢI
QUYẾT VẤN ĐỀ THƠNG QUA DẠY HỌC CHỦ ĐỀ
“PHƯƠNG TRÌNH LƯỢNG GIÁC’’
KHĨA LUẬN TỐT NGHIỆP ĐẠI HỌC
Ngành: Sư phạm Tốn
NGƯỜI HƯỚNG DẪN: TS. Hồng Cơng Kiên
Phú Thọ, 2018
LỜI CẢM ƠN
Để hồn thành khóa luận tốt nghiệp, ngồi sự nỗ lực của bản thân, tơi cịn
nhận được sự giúp đỡ tận tình của các thầy giáo, cơ giáo trong Khoa Toán –
Tin, Trường Đại học Hùng Vương đã tận tình chỉ bảo tơi trong suốt thời gian
thực hiện đề tài khóa luận này.
Đặc biệt tơi xin bày tỏ lịng biết ơn sâu sắc tới thầy giáo TS. Hồng Công
Kiên – P. Hiệu trưởng trường Đại học Hùng Vương. Thầy đã giành nhiều thời
gian quý báu tận tình hướng dẫn tơi trong suốt q trình thực hiện khóa luận
tốt nghiệp, đồng thời giúp tôi lĩnh hội được những kiến thức chuyên môn và
rèn luyện cho tôi tác phong nghiên cứu khoa học.
Tôi cũng xin cảm ơn các thầy cô trong Ban giám hiệu, tổ Toán – Tin
trường THPT Long Châu Sa, Lâm Thao đã nhiệt tình giúp đỡ, tạo điều kiện
thuận lợi cho tơi trong q trình tơi tiến hành thực nghiệm sư phạm và thực
tập tại trường.
Cuối cùng, tơi xin gửi lời cảm ơn tới gia đình và bạn bè – những người
luôn động viên, cổ vũ tôi để tơi hồn thành khóa luận.
Mặc dù đã rất cố gắng song khóa luận khơng tránh khỏi những thiếu sót.
Vì vậy, tơi rất mong nhận được sự góp ý của các thầy giáo, cơ giáo và bạn đọc
để khóa luận được hồn thiện hơn.
Tơi xin chân thành cảm ơn!
Việt Trì, tháng 05 năm 2018
Sinh viên
Lê Thị Lan Hương
MỤC LỤC
MỞ ĐẦU ....................................................................................................... 1
CHƯƠNG 1. CƠ SỞ LÍ LUẬN VÀ THỰC TIỄN ......................................... 3
1.1. Hoạt động tư duy trong dạy học mơn Tốn.............................................. 3
1.1.1. Đặc điểm của hoạt động tư duy trong dạy học mơn Tốn ..................... 3
1.1.2. Hoạt động trí tuệ của học sinh trong học tập mơn Toán ........................ 3
1.2. Năng lực phát hiện và giải quyết vấn đề trong Tốn học ......................... 6
1.2.1. Vấn đề, tình huống gợi vấn đề trong Toán học ..................................... 6
1.2.2. Năng lực và năng lực Toán học ............................................................ 9
1.2.3. Năng lực phát hiện và giải quyết vấn đề trong Toán học..................... 11
1.2.4. Cấu trúc của năng lực phát hiện và giải quyết vấn đề ......................... 15
1.2.5. Mối quan hệ giữa năng lực phát hiện và giải quyết vấn đề với năng lực
toán học của học sinh. .................................................................................. 16
1.3. Dạy học phát hiện và giải quyết vấn đề ................................................. 16
1.3.1. Cơ sở lí luận ....................................................................................... 16
1.3.2. Đặc điểm của dạy học phát hiện và giải quyết vấn đề ......................... 18
1.3.3. Những hình thức và các cấp độ của dạy học PH&GQVĐ ................... 18
1.3.4. Thực hiện dạy học PH&GQVĐ .......................................................... 23
1.4. Những ưu điểm và hạn chế của phương pháp dạy học phát hiện và giải
quyết vấn đề ................................................................................................. 25
1.4.1. Ưu điểm............................................................................................. 25
1.4.2. Hạn chế .............................................................................................. 25
1.5. Một số lưu ý khi dạy học theo hướng phát hiện và giải quyết vấn đề ..... 25
1.6. Vị trí, vai trị của chủ đề “Phương trình lương giác” trong chương trình
tốn THPT.................................................................................................... 26
1.7. Thực trạng về dạy học rèn luyện cho học sinh năng lực phát hiện và giải
quyết vấn đề cho học sinh thông qua dạy học chủ đề “Phương trình lượng
giác” ở trường THPT.................................................................................... 28
Kết luận chương 1 ........................................................................................ 32
CHƯƠNG 2: MỘT SỐ BIỆN PHÁP NHẰM RÈN LUYỆN NĂNG LỰC
PHÁT HIỆN VÀ GIẢI QUYẾT VẤN ĐỀ CHO HỌC SINH THƠNG QUA
DẠY HỌC CHỦ ĐỀ “PHƯƠNG TRÌNH LƯỢNG GIÁC” ......................... 33
2.1. Nội dung và những lưu ý khi dạy học chủ đề “Phương trình lượng giác”33
2.1.1. Nội dung chủ đề “Phương trình lượng giác” – Đại số và Giải tích 11 cơ
bản ............................................................................................................... 33
2.1.2. Một số lưu ý khi dạy học chủ đề “Phương trình lượng giác” .............. 33
2.2. Một số kiến thức cơ bản về lượng giác .................................................. 35
2.2.1. Giá trị lương giác của một cung (góc)................................................. 35
2.2.2. Cơng thức lượng giác cần ghi nhớ ...................................................... 37
2.3. Nguyên tắc xây dựng các biện pháp ...................................................... 39
2.3.1. Nguyên tắc 1: Đảm bảo tính khoa học, tính tư tưởng và tính thực tiễn 39
2.3.2. Nguyên tắc 2: Đảm bảo sự thống nhất giữa cụ thể và trừu tượng ........ 39
2.3.3. Nguyên tắc 3: Đảm bảo sự thống nhất giữa tính đồng loạt và phân hóa40
2.3.5. Nguyên tắc 5: Đảm bảo sự thống nhất giữa vai trị chủ đạo của thầy và
tính tự giác, tích cực, chủ động của trị ......................................................... 40
2.4. Một số biện pháp nhằm rèn luyện năng lực phát hiện và giải quyết vấn đề
cho học sinh thông qua dạy học chủ đề “Phương trình lượng giác” .............. 41
2.4.1. Biện pháp 1: Bồi dưỡng cho HS kiến thức cơ bản về chủ đề “Phương
trình lượng giác” .......................................................................................... 41
2.4.2. Biện pháp 2: Bồi dưỡng các thao tác tư duy như: khái qt hóa, đặc biệt
hóa, dự đốn,... giúp rèn luyện cho HS năng lực PH&GQVĐ ...................... 46
2.4.3. Biện pháp 3: Dạy học phù hợp với trình độ của HS trong cùng 1 lớp
giúp các em độc lập PH&GQVĐ .................................................................. 53
Kết luận chương 2 ........................................................................................ 58
CHƯƠNG 3: THỰC NGHIỆM SƯ PHẠM ................................................. 59
3.1. Mục đích thực nghiệm ........................................................................... 59
3.2. Nội dung thực nghiệm ........................................................................... 59
3.3. Tổ chức thực nghiệm ............................................................................. 59
3.4. Đánh giá kết quả thực nghiệm ............................................................... 60
3.4.1. Đánh giá định tính .............................................................................. 60
3.4.2. Đánh giá định lượng ........................................................................... 60
Kết luận chương 3 ........................................................................................ 63
KẾT LUẬN.................................................................................................. 64
DANH MỤC CÁC KÍ HIỆU, CÁC CHỮ VIẾT TẮT
Viết tắt
Viết đầy đủ
Đ
Đúng
ĐC
Đối chứng
GQVĐ
Giải quyết vấn đề
GV
Giáo viên
HS
Học sinh
LG
Lượng giác
PH&GQVĐ
Phát hiện và giải quyết vấn đề
PPDH
Phương pháp dạy học
PT
Phương trình
S
Sai
SGK
Sách giáo khoa
THPT
Trung học phổ thông
t/m
Thỏa mãn
TN
Thực nghiệm
Tr
Trang
TW
Trung ương
1
MỞ ĐẦU
1. Lý do chọn đề tài khóa luận
Mục đích cuối cùng của giáo dục chính là đào tạo con người phát triển
tồn diện. Để đạt được mục đích đó thì rất cần sự quan tâm của Đảng, Nhà
nước, tồn dân và đặc biệt là của ngành giáo dục. Nghị quyết hội nghị TW IV
của Ban chấp hành TW Đảng khoá VIII đã chỉ ra rằng: “Mục tiêu giáo dục
đào tạo là đào tạo những con người lao động tự chủ, tích cực, có năng lực
giải quyết vấn đề, góp phần thực hiện mục tiêu lớn của đất nước là: dân giàu,
nước mạnh, xã hội công bằng, dân chủ, văn minh”.
Trong cơng cuộc đổi mới của giáo dục thì một trong những vấn đề quan
trọng mang tính cấp thiết là đổi mới phương pháp dạy học. Luật Giáo dục
nước cộng hoà xã hội chủ nghĩa Việt Nam cũng đã quy định rõ: “Phương
pháp giáo dục là phải phát huy tính tích cực, tự giác, chủ động tư duy sáng
tạo của người học; bồi dưỡng cho học sinh năng lực tự học, khả năng thực
hành, lòng say mê học tập và ý thức vươn lên”. Và “Phương pháp giáo dục
phổ thông phải phát huy tính tích cực, tự giác, chủ động, sáng tạo của học
sinh, phù hợp với đặc điểm của từng lớp học, môn học, bồi dưỡng phương
pháp tự học, rèn luyện kỹ năng vận dụng kiến thức vào thực tiễn, tác động đến
tình cảm, đem lại niềm vui, hứng thú học tập cho học sinh”.
Những quy định này phản ánh nhu cầu đổi mới giáo dục để giải quyết
mâu thuẫn giữa yêu cầu đào tạo con người mới với thực trạng lạc hậu chung
của PPDH ở nước ta hiện nay. Do vậy mơn Tốn nói chung và mơn Tốn ở
THPT nói riêng cũng đứng trước yêu cầu cấp bách, đó là đổi mới về nội dung,
mục tiêu và PPDH.
Phát huy tính tích cực học tập của học sinh khơng phải là vấn đề mới mà
đã được đặt ra nhiều năm nay trong ngành giáo dục nước ta. Trong cuộc cải
cách giáo dục lần hai, vấn đề này đã trở thành một trong những phương hướng
chính nhằm đào tạo những con người lao động sáng tạo, làm chủ đất nước.
2
Năng lực phát hiện và giải quyết vấn đề là một trong những năng lực
then chốt, cần thiết cho mọi học sinh. Trong những năm gần đây, trước những
thách thức mới của yêu cầu phát triển xã hội, trong bối cảnh của công cuộc
cách mạng công nghệ thông tin trên thế giới, mục đích của nhà trường là phải
đào tạo cho học sinh, lực lượng lao động nòng cốt trong tương lai, có năng lực
PH&GQVĐ thích ứng được với sự phát triển của xã hội.
Phương pháp dạy học PH&GQVĐ là một PPDH tích cực. Nó phát huy
tính tích cực, chủ động sáng tạo của học sinh. PPDH này phù hợp với yêu cầu
đổi mới của giáo dục nước nhà là xây dựng con người biết đặt ra vấn đề và
giải quyết vấn đề trong cuộc sống, phù hợp với hệ giá trị chuẩn mực, những
con người thực sự là động lực của sự phát triển nhanh chóng và bền vững của
đất nước.
Chủ đề Phương trình lượng giác đối với học sinh ở trường THPT được
coi là một chủ đề khó, chưa tạo được hứng thú học tập cho học sinh. Học sinh
với tâm lí ngại và sợ học chủ đề này dẫn tới hiệu quả của việc dạy và học
không cao. Thay đổi PPDH như thế nào là bài toán rất khó cần nhiều thời gian
và cơng sức tìm tịi của giáo viên, tuy nhiên quan trọng hơn cả vẫn là sử dụng
PPDH như thế nào để đạt được hiệu quả trong q trình dạy học.
Với những lí do trên, tơi đã lựa chọn đề tài nghiên cứu khố luận là:
“Rèn luyện cho học sinh năng lực phát hiện và giải quyết vấn đề thông qua
dạy học chủ đề “Phương trình lượng giác” ”.
2. Mục tiêu khóa luận
Đề xuất một số biện pháp nhằm rèn luyện năng lực phát hiện và giải
quyết vấn đề cho học sinh.
3. Ý nghĩa khoa học và thực tiễn
Khoá luận xây dựng được một hệ thống ví dụ và bài tập minh hoạ theo
định hướng rèn luyện năng lực phát hiện và giải quyết vấn đề cho học sinh.
Đề xuất một số biện pháp để rèn luyện năng lực phát hiện và giải quyết vấn đề
cho học sinh, góp phần nâng cao chất lượng dạy học mơn Tốn.
3
Chương 1. CƠ SỞ LÍ LUẬN VÀ THỰC TIỄN
1.1. Hoạt động tư duy trong dạy học mơn Tốn
1.1.1. Đặc điểm của hoạt động tư duy trong dạy học mơn Tốn
Tư duy mang tính có vấn đề, tính gián tiếp, tính chân lý, tính trừu
tượng và khái qt hóa là do nó gắn chặt với ngơn ngữ. Tư duy và ngơn ngữ
có mối quan hệ mật thiết với nhau. Nếu khơng có ngơn ngữ thì q trình tư
duy của con người không thể được diễn ra, đồng thời các sản phẩm của tư duy
(khái niệm, phán đốn,…) cũng khơng được chủ thể và người khác tiếp nhận.
Học toán là phải biết vận dụng tốn học để giải quyết những bài tốn
có nguồn gốc từ thực tiễn. Và để giải được những bài tốn đó thì địi hỏi
người học phải biết tư duy, biết chuyển từ tình huống cụ thể sang ngơn ngữ
tốn học bằng những hình ảnh trực quan hay ký hiệu toán học và biết chuyển
ngược lại các kết quả tốn học có được sang ngơn ngữ của thực tiễn.
Hoạt động tư duy trong dạy học mơn Tốn cịn được thể hiện rõ nét
nhờ vào nhiệm vụ nhận thức của người học. Cụ thể, khi giáo viên đặt cho học
sinh một câu hỏi, một bài toán hay một yêu cầu học sinh giải quyết một nhiệm
vụ nhận thức nào đó thì học sinh phải tự mình giải quyết nhiệm vụ đó, tự
mình huy động kiến thức, đi tìm sự liên hệ giữa những cái chưa biết và cái đã
biết, đưa ra dự đoán và nhận thấy mâu thuẫn khi vận dụng các phương pháp
giải khác nhau và tự mình đưa ra kết luận.
1.1.2. Hoạt động trí tuệ của học sinh trong học tập mơn Tốn
Hoạt động trí tuệ là tập hợp các hành động trí tuệ để giải quyết nhiệm
vụ nhận thức bao gồm: hành động cảm giác, hành động tri giác, hành động
tưởng tượng,… Do đó, khi phân tích hoạt động trí tuệ của học sinh trong học
tập mơn Toán cần quan tâm đến hai vấn đề sau đây:
a) Các hoạt động trí tuệ cơ bản thường vận dụng trong Tốn học
+ Phân tích – tổng hợp: Phân tích là sự phân chia đối tượng nhận thức
thành các bộ phận, thành phần thuộc tính, quan hệ khác nhau để nhận thức nó
sâu sắc hơn. Cịn tổng hợp là sự hợp nhất các bộ phận, thành phần, thuộc tính,
4
quan hệ của đối tượng nhận thức thành một chỉnh thể. Phân tích và tổng hợp
là hai thao tác tư duy trái ngược nhau nhưng là hai mặt của quá trình thống
nhất.
+ Trừu tượng hố – khái qt hố: Trừu tượng hố là sự gạt bỏ những
mặt, những thuộc tính, những mối liên hệ, quan hệ không cần thiết mà chỉ giữ
lại những yếu tố cần thiết để tư duy. Cịn khát qt hố là sự hợp nhất nhiều
đối tượng khác nhau có chung thuộc tính, những mối liên hệ, quan hệ nhất
định thành một loại, một nhóm. Trừu tượng hoá là điều kiện cần của khái quát
hoá.
+ So sánh – tương tự: So sánh là cơ sở của tư duy và mọi sự hiểu biết.
Nó là sự xác định thể hiện rõ ở sự bằng nhau hay không bằng nhau, sự giống
nhau hay khác nhau, sự đồng nhất hay khơng đồng nhất giữa các sự vật, hiện
tượng. Cịn tương tự là thao tác tư duy dựa trên sự giống nhau về tính chất và
quan hệ của những đối tượng toán học khác nhau.
Các thao tác tư duy cơ bản như: phân tích – tổng hợp, trừu tượng hố –
khái qt hố, so sánh – tương tự đều có mối quan hệ mật thiết với nhau,
chúng hỗ trợ, bổ sung thống nhất cho nhau theo một hướng nhất định và phụ
thuộc vào chiến lược tư duy quy định. Vì vậy, trong quá tình dạy học giáo
viên cần quan tâm rèn luyện cho học sinh các thao tác tư duy này.
Ví dụ 1.1: Tìm cơng thức tính sin 3x như sau:
Ta phân tích làm biến đổi sin 3x thành sin(2 x x) .
Sự phân tích diễn ra trên cơ sở tổng hợp, liên hệ sin 3x với công thức
sin(a b) sinacosb cos a sin b .
Sau đó đặc biệt hóa cơng thức sin(a b) cho trường hợp a 2 x, b x
ta được công thức sin(2 x x) sin 2 x cos x cos 2 x sin x . Thao tác phân tích
một lần nữa diễn ra khi ta tách sin 2 x 2sin x cos x, cos 2 x 2cos 2 x 1. Từ
đó biến đổi vế phải ta được 4sin x cos 2 x sin x . Tiếp tục thao tác phân tích
khi tách cos 2 x 1 sin 2 x ta được sin 3x 3sin x 4sin 3 x .
Có thể minh họa ví dụ trên bằng sơ đồ (Hình 1.1)
5
sinacosb cos a sin b
sin( a b)
Đặc biệt hóa
sin 2 x cos x cos 2 x sin x
Khái qt hóa
Phân tích
sin 2 x cos x sin x cos 2 x
Phân tích
Phân tích
sin(2 x x)
2cos 2 x 1
2sin x cos x
4sin x cos 2 x sin x
Phân tích
Phân tích
1 sin 2 x
Tổng hợp
sin 3x
3sin x 4sin 3 x
Hình 1.1. Sơ đồ cách tìm công thức sin3x bằng các thao tác tư duy cơ bản
b) Hoạt động trí tuệ trong giải tốn của học sinh
- Dự đốn: Dự đốn giữ vai trị chủ đạo, trung tâm của hoạt động trí tuệ
trong giải tốn. Tức là ngay sau khi đọc kĩ đề bài tốn thì người giải phải cố
gắng dự đốn để tìm kiếm lời giải cho tốn đó. Dự đốn có thể xuất hiện
xun suốt trong q trình giải tốn, khơng chỉ dự đốn để tìm ra cách giải bài
tốn, dự đốn kết quả bài tốn mà dự đốn có thể làm thay đổi bản chất bài
toán.
- Tổ chức và huy động kiến thức: Huy động kiến thức là tách ra từ trí
nhớ các yếu tố có liên quan đến bài tốn. Cịn tổ chức kiến thức là kết nối các
yếu tố có liên quan đến bài toán lại với nhau.
6
- Tách biệt và kết hợp: Tách biệt là tách một bộ phận cụ thể ra khỏi cái
toàn thể bao quanh nó và chuyển sự tập trung vào cái chi tiết của bộ phận này.
Còn kết hợp là liên kết những bộ phận cụ thể sau khi xem xét với nhau thành
cái toàn thể và cái toàn thể này được phản ánh đầy đủ hơn trước.
Những hành động và các thao tác trí tuệ trên có thể được tóm tắt trong
sơ đồ dưới đây:
Hình 1.2. Sơ đồ tổng quát về hoạt động trí tuệ trong giải tốn
Theo sơ đồ, tập hợp các hành động trí tuệ cùng những mối quan hệ giữa
chúng cho ta thấy rõ cấu trúc của hoạt động trí tuệ trong giải tốn. Chẳng hạn,
khi giải quyết một bài tốn cụ thể thì thao tác nhận biết được thể hiện qua việc
sử dụng định nghĩa; thao tác nhóm lại được thể hiện qua việc nhớ lại định
nghĩa, định lí, tính chất, hệ quả; thao tác bổ sung được thể hiện qua việc bổ
sung những yếu tố phụ như đặt ẩn phụ để giải phương trình, hệ phương
trình,… Hay kẻ thêm đường phụ khi giải nhiều bài toán hình học. Ngồi ra,
những dấu hiệu của hoạt động trí tuệ trong giải tốn cũng được thể hiện rõ
như: có cảm giác hiểu được bài toán là dấu hiệu nhận biết; tri giác một cách rõ
ràng các chi tiết là dấu hiệu tách biệt; nhận định bài toán một cách chính xác
là dấu hiệu nhóm lại; người giải cảm thấy tự tin, sung sướng khi mình nắm
được tư tưởng chủ đạo để giải bài toán là dấu hiệu dự đoán đúng;…
1.2. Năng lực phát hiện và giải quyết vấn đề trong Tốn học
1.2.1. Vấn đề, tình huống gợi vấn đề trong Toán học
7
Nội dung trình bày ở mục này dựa theo [10, tr. 183-186].
a) Vấn đề và một số khái niệm liên quan trong Toán học
Hệ thống: được hiểu là một tập hợp những phần tử cùng với những
quan hệ giữa những phần tử của tập hợp đó.
Một tình huống: được hiểu là một hệ thống phức tạp gồm chủ thể và
khách thể, trong đó chủ thể có thể là người cịn khách thể lại là một hệ thống
nào đó.
Nếu trong một tình huống, chủ thể cịn chưa biết ít nhất một phần tử
của khách thể thì tình huống này gọi là một tình huống bài tốn đối với chủ
thể.
Trong một tình huống bài toán, nếu trước chủ thể đặt ra mục đích tìm
phần tử chưa biết nào đó dựa vào một số những phần tử cho trước ở trong
khách thể thì ta có một bài tốn.
Một bài tốn được gọi là vấn đề nếu chủ thể chưa có trong tay một
thuật giải nào để tìm ra phần tử chưa biết của bài tốn.
Hiểu theo nghĩa trên thì vấn đề ở đây khơng đồng nghĩa với bài tốn.
Nếu bài tốn chỉ u cầu học sinh áp dụng một quy tắc để giải thì khơng gọi
là vấn đề.
Ta có thể hiểu vấn đề là điều cần được xem xét, nghiên cứu, giải quyết
(Hoàng Phê - Từ điển tiếng Việt). Trong Toán học, người ta hiểu vấn đề là
một câu hỏi hay một hành động mà trong đó:
- Học sinh chưa trả lời được câu hỏi hay chưa thực hiện được hành
động.
- Học sinh cũng chưa được học một quy luật có tính thuật giải nào để
trả lời câu hỏi đó hay thực hiện được hành động đó.
b) Tình huống gợi vấn đề trong Tốn học
Tình huống gợi vấn đề hay cịn gọi là tình huống có vấn đề là tình
huống mà ở đó gợi cho người học những khó khăn về lý luận hay thực tiễn mà
họ thấy cần thiết phải vượt qua và có khả năng vượt qua nhưng khơng phải
ngay tức thời nhờ một thuật giải mà cần phải có quá trình tư duy tích cực, vận
8
dụng, liên hệ những tri thức cũ liên quan. Một tình huống được gọi là có vấn
đề thì phải thoả mãn 3 điều kiện sau:
+1/ Tồn tại một vấn đề
Đây là yếu tố trung tâm của tình huống. Tình huống phải bộc lộ mâu
thuẫn giữa thực tiễn với trình độ nhận thức, chủ thể phải ý thức được một khó
khăn trong tư duy hoặc hành động mà vốn hiểu biết sẵn có chưa đủ để vượt
qua. Nói cách khác, phải có một vấn đề, tức là có ít nhất một phần tử của
khách thể mà học sinh chưa biết và cũng chưa có trong tay thuật giải để tìm
phần tử đó. Trong học tập, vấn đề có thể là tri thức mới, cách thức hành động
mới, kĩ năng mới mà học sinh cần phát hiện và chiếm lĩnh.
+2/ Gợi nhu cầu nhận thức
Nếu tình huống có một vấn đề nhưng vì lí do nào đó học sinh khơng
thấy có nhu cầu tìm hiểu, giải quyết, chẳng hạn họ thấy vấn đề xa lạ, khơng
liên quan gì tới mình thì đó cũng chưa phải là một tình huống gợi vấn đề.
Điều quan trọng là tình huống phải gợi nhu cầu nhận thức ở học sinh để họ
cảm thấy cần thiết bổ sung, điều chỉnh, hoàn thiện tri thức kĩ năng bằng cách
tham gia giải quyết vấn nảy sinh. Tốt nhất là tình huống gây được cảm xúc:
ngạc nhiên, hứng thú và mong muốn giải quyết.
+3/ Khơi dậy niềm tin ở khả năng của bản thân
Nếu một tình huống tuy có vấn đề và học sinh tuy có nhu cầu giải
quyết vấn nhưng họ cảm thấy vấn đề vượt xa so với khả năng của mình thì họ
cũng khơng sẵn sàng tham gia giải quyết vấn đề. Tình huống cần khơi dậy ở
học sinh cảm nghĩ là tuy học sinh chưa có ngay lời giải nhưng đã có một số
tri thức, kĩ năng liên quan đến vấn đề đặt ra và nếu họ tích cực suy nghĩ thì có
nhiều hi vọng giải quyết được vấn đề đó. Như vậy, học sinh có được niềm tin
ở khả năng huy động tri thức và kĩ năng sẵn có để giải quyết hoặc tham gia
giải quyết vấn đề.
Nếu thiếu một trong ba yếu tố thành phần trên thì sẽ khơng có tình
huống có vấn đề.
Hay nói cách khác tình huống có vấn đề là tình huống mà ở đó xuất
9
hiện một vấn đề như đã nói ở trên và vấn đề này vừa quen, vừa lạ với người
học.
- Quen vì có chứa đựng những kiến thức có liên quan mà học sinh
đã được học trước đó.
- Lạ vì mặc dù trơng quen nhưng ngay tại thời điểm đó học sinh chưa
thể giải được.
Ví dụ 1.2: Tính tổng S sin x sin 2 x sin 3x ... sin nx, n N
Ta xét xem đây có phải là tình huống có vấn đề hay khơng?
Ta thấy:
- Tồn tại vấn đề: Cách tính S tổng quát (học sinh chưa biết).
- Gợi nhu cầu nhận thức: Học sinh đã biết cách tính các biểu thức dạng
S trong các trường hợp n nhận giá trị cụ thể, tuy nhiên với n lớn học sinh
phải tính tốn dài và rất mát thời gian, thậm chí khơng tính được. Từ đó, học
sinh có nhu cầu muốn biết cách tính S tổng quát.
- Gợi niềm tin ở bản thân: Học sinh đã biết cơng thức lượng giác biến
đổi tích thành tổng, nếu nhân cả hai vế của S với 2sin
x
sau đó biến đổi các
2
tích ở vế phải thành các tổng thì sẽ rút gọn được vế phải ở dạng rất đơn giản.
Từ đó, học sinh tính được S tổng qt đơn giản hơn cách trên rất nhiều.
Vậy, đây là tình huống có vấn đề.
1.2.2. Năng lực và năng lực Tốn học
a) Năng lực
Theo quan điểm của những nhà tâm lý học: Năng lực là tổng hợp các
đặc điểm, thuộc tính tâm lý của cá nhân phù hợp với yêu cầu đặc trưng của
một hoạt động nhất định đảm bảo cho hoạt động đó đạt kết quả cao. Các năng
lực hình thành trên cơ sở của các tư chất tự nhiên của cá nhân, nó đóng vai trị
quan trọng, năng lực của con người khơng phải hồn tồn do tự nhiên mà có,
phần lớn do cơng tác, tập luyện mà có.
“Năng lực là tổ hợp các thuộc tính độc đáo của cá nhân, phù hợp với
những yêu cầu của một hoạt động nhất định, đảm bảo cho hoạt động đó có kết
10
quả.” [23; 155].
Tâm lý học chia năng lực thành các dạng khác nhau: năng lực chung
và năng lực chuyên môn. Năng lực chung là năng lực cần thiết cho nhiều
ngành hoạt động khác nhau như năng lực phán xét tư duy lao động, năng lực
khái quát hóa, năng lực tưởng tượng. Cịn năng lực chun mơn là năng lực
đặc trưng trong lĩnh vực nhất định của xã hội như năng lực tổ chức, năng lực
âm nhạc, hội họa, toán học,… Năng lực chung và năng lực chun mơn có
quan hệ qua lại hữu cơ với nhau, năng lực chung là cơ sở của năng lực chuyên
môn.
Trong thực tế, mọi hoạt động có kết quả và hiệu quả cao thì mỗi
người đều phải có năng lực chung phát triển ở trình độ cần thiết và có một vài
năng lực chun mơn ứng với lĩnh vực cơng việc của mình. Những năng lực
cơ bản này khơng phải là bẩm sinh mà nó phải được giáo dục phát triển và bồi
dưỡng ở con người.
Cần phân biệt năng lực với tri thức, kỹ năng, kỹ xảo. Tri thức là
những hiểu biết thu nhận được từ sách vở, từ học hỏi và từ kinh nghiệm cuộc
sống của mình. Kỹ năng là sự vận dụng bước đầu những kiến thức thu lượm
vào thực tế để tiến hành một hoạt động nào đó. Kỹ xảo là những kỹ năng được
lặp đi lặp lại nhiều lần đến mức thuần thục cho phép con người không phải
tập trung nhiều ý thức vào việc mình đang làm. Cịn năng lực là một tổ hợp
phẩm chất tương đối ổn định, tương đối cơ bản của cá nhân, cho phép nó thực
hiện có kết quả một hoạt động. Như vậy, năng lực là điều kiện đủ để có tri
thức, kỹ năng, kỹ xảo trong một lĩnh vực nào đó.
b) Năng lực Tốn học
Năng lực toán học được hiểu là những đặc điểm tâm sinh lí cá nhân
(trước hết là những đặc điểm hoạt động trí tuệ) đáp ứng nhu cầu của hoạt
động toán học, được biểu hiện ở một số mặt:
- Năng lực thực hiện các thao tác tư duy cơ bản.
- Năng lực rút gọn q trình lập luận tốn học và hệ thống các phép
tính.
11
- Sự linh hoạt của quá trình tư duy.
- Khuynh hướng về sự rõ ràng, đơn giản và tiết kiệm của lời giải các
bài toán.
- Năng lực chuyển dễ dàng từ tư duy thuận sang tư duy nghịch.
- Trí nhớ về các sơ đồ tư duy khái quát, các quan hệ khái quát trong
lĩnh vực số và dấu.
Với mỗi người khác nhau thì năng học giải quyết vấn đề trong mơn Tốn, Tạp
chí Nghiên cứu Giáo dục (9), tr.22.
5. Nguyễn Hữu Châu (2005), Những vấn đề cơ bản về chương trình và quá
trình dạy học, Nhà xuất bản Giáo dục, Hà Nội.
6. Nguyễn Văn Cường, Bernd Meier (2010), Một số vấn đề chung về đổi mới
phương pháp dạy học ở trường THPT, Nhà xuất bản Giáo dục, Hà Nội.
7.ThS.Lê Đức (2011), Các dạng tốn điển hình giải tích 11, Nhà xuất bản Đại
Học Quốc Gia Hà Nội.
8. Trần Văn Hạo (Tổng chủ biên), Vũ Tuấn (Chủ biên), Đào Ngọc Nam, Lê
Văn Tiến, Vũ Tiết Yên (2015), Sách giáo khoa Đại số và Giải tích 11, Nhà
xuất bản Giáo Dục.
9. Lê Thị Hương, Nguyễn Kiếm, Hồ Xuân Thắng (2009), Phân loại và
phương pháp giải toán lượng giác, Nhà xuất bản Đại học Quốc Gia, Hà Nội.
10. Nguyễn Bá Kim (2003), Phương pháp dạy học mơn tốn, Nhà xuất bản
Đại Học Sư Phạm.
11. Nguyễn Bá Kim (chủ biên), Bùi Huy Ngọc (2006), Phương pháp dạy học
mơn tốn, Nhà xuất bản Đại Học Sư Phạm.
12. Nguyễn Xuân Liêm, Đặng Hùng Thắng (2007), Bài tập nâng cao và một
số chuyên đề đại số và giải tích 11, Nhà xuất bản Giáo Dục Vệt Nam.
13. Lê Nguyên Long (1999), Thử đi tìm những phương pháp dạy học hiệu
quả, Nhà xuất bản Giáo dục.
14. Nguyễn Phú Lộc (2008), Lịch sử toán học, Nhà xuất bản Giáo Dục.
15. Nguyễn Vũ Lương (chủ biên), Phạm Văn Hùng, Nguyễn Ngọc Thắng
(2005), Các bài giảng về phương trình lượng giác, Nhà xuất bản Giáo dục,
Hà Nội.
16. Bùi Văn Nghị (2008), Giáo trình Phương pháp dạy học những nội dung
cụ thể mơn tốn, Nhà xuất bản Đại Học Sư Phạm.
17. Đồn Quỳnh (Tổng chủ biên), Nguyễn Huy Đoan (chủ biên), Nguyễn
Xuân Liêm, Nguyễn Khắc Minh, Đặng Hùng Thắng (2007), SGK Đại số và
Giải tích 11 nâng cao, Nhà xuất bản Giáo dục, Hà Nội.
18. Huỳnh Cơng Thái (2008), Các dạng tốn điển hình phương trình – hệ
phương trình lượng giác, Nhà xuất bản Đại học Quốc gia, Hà Nội.
19. Lê Văn Tiến (2005), Phương pháp dạy học mơn tốn ở trường phổ thơng,
Đại học sư phạm, TP.Hồ Chí Minh.
20. Nguyễn Cảnh Toàn (1997), Phương pháp luận duy vật biện chứng với
việc dạy, học, nghiên cứu toán học - (tập 1,2), NXB ĐHQG Hà Nội.
21. Nguyễn Duy Thuận (2007), Giáo trình phát triển tư duy toán học cho học
sinh, NXB Đại học Sư Phạm.
22. Nguyễn Văn Thuận, Nguyễn Hữu Châu (2010), Phát hiện và sửa chữa
sai lầm cho học sinh trong dạy học đại số và giải tích ở trường phổ thơng,
NXB Đại học Sư Phạm.
23. Nguyễn Quang Uẩn (chủ biên), Trần Trọng Thuỷ (2003), Tâm Lí Học
Đại Cương, Hà Nội.
24. Website Bách khoa toàn thư mở Wikipedia Việt Nam, ipedia.
org.
PHỤ LỤC
PHỤ LỤC 1: PHIẾU ĐIỀU TRA DÀNH CHO GIÁO VIÊN
(Khoanh vào đáp án tương ứng mà thầy/cô cho là phù hợp, mỗi câu khoanh 1
đáp án)
Câu 1: Thầy (cô) vận dụng phương pháp dạy học nào sau đây trong giờ học để
giúp HS hiểu bài?
A. Gợi mở, vấn đáp
C. Diễn giảng – thuyết trình
B. Thảo luận nhóm
D. Phát hiện và giải quyết vấn đề
Câu 2: Trong dạy học chủ đề “Phương trình lượng giác” thầy (cơ) có thường
xun sử dụng PPDH PH&GQVĐ khơng?
A. Rất thường xun
C. Ít sử dụng
B. Khá thường xuyên
D. Không sử dụng
Câu 3: Theo thầy/cô khi dạy học PH&GQVĐ thường gặp phải khó khăn gì?
A. Mất nhiều thời gian chuẩn bị bải giảng và các hoạt động dạy học
B. Khó tạo tình huống có vấn đề
C. HS chưa thực sự hứng thú với việc học Toán nên các em khơng có sự hợp
tác trong q trình học tập.
D. Tất cả các phương án trên
PHỤ LỤC 2: PHIẾU ĐIỀU TRA DÀNH CHO HỌC SINH
Câu 1: Trong tiết học Toán, các mức độ hoạt động của em như thế nào?
(Đánh dấu x vào ô tương ứng mà em cho là phù hợp, mỗi dòng đánh một
dấu).
Mức độ
Các hoạt động
Thường
xun
Đơi khi
Ít khi
Nghe giáo viên giảng bài và ghi chép.
Đọc sách giáo khoa và trả lời câu hỏi.
Mạnh dạn thảo luận với giáo viên để phát hiện và
giải quyết vấn đề nào đó.
Phát hiện và giải quyết vấn đề dựa vào khả năng,
kiến thức và kinh nghiệm của mình.
Khoanh vào đáp án tương ứng mà em cho là phù hợp, mỗi câu khoanh một
đáp án
Câu 2: Trong giờ học, khi giáo viên đưa ra câu hỏi/bài tập em thường:
A. Suy nghĩ, tìm cách trả lời câu hỏi/bài tập để phát biểu
B. Suy nghĩ, tìm cách trả lời nhưng khơng dám phát biểu vì sợ khơng đúng
C. Chờ câu trả lời hoặc cách giải bài tập của bạn
D. Chờ giáo viên trả lời/giải bài tập
Câu 3: Kiến thức trong chủ đề “Phương trình lượng giác” là kiến thức mới và
khó đối với em?
A. Hồn tồn đồng ý
B. Đồng ý
C. Không đồng ý
PHỤ LỤC 3: GIÁO ÁN THỰC NGHIỆM
Bài soạn 1.
Bài 2. PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN
(Tiết 6+7, Đại số và giải tích 11 cơ bản)
I. Mục tiêu
1. Kiến thức
- Nêu được hai dạng phương trình lượng giác cơ bản sin x m, cos x m
- Nêu được phương pháp giải phương trình sin x m, cos x m
- Giải được phương trình: sin x m, cos x m
2. Kỹ năng
- Rèn kỹ năng phân tích, tổng hợp; kĩ năng PH&GQVĐ
- Rèn kỹ năng giải phương trình: sin x m, cos x m
3. Thái độ
- Tự giác, tích cực trong học tập
- Say mê tìm hiểu, sáng tạo
- u thích bộ mơn
II. Phương pháp – phương tiện
1. Phương pháp
Sử dụng phương pháp phát hiện và giải quyết vấn đề
2. Phương tiện
- Giáo viên: giáo án, đồ dùng dạy học
- Học sinh: sách giáo khoa, vở ghi, đồ dùng học tập
III.Tiến trình dạy học
1.Ổn định tổ chức lớp
Giờ lên lớp
Lớp
Sĩ số
Học sinh vắng
2.Kiểm tra bài cũ
Lồng vào quá trình học bài mới.
3.Bài mới
Hoạt động của GV
Hoạt động của HS
Bước 1: Phát hiện/ thâm nhập
vấn đề.
HĐ1: GV: đưa ra bài toán
HS: Giải
Bài toán: Một vệ tinh nhân tạo bay Vệ tinh cách mặt đất 250 km khi h
quanh trái đất theo một quỹ đạo hình = 250 (km), tức là:
elip. Độ cao h (km) của vệ tinh so với
550 450cos
50
bề mặt trái đất được xác định bởi công
2
cos t
50
3
thức: h 550 450cos t . Trong đó
50
t là thời gian tính bằng phút kể từ lúc Đặt x
vệ tinh bay vào quỹ đạo. Người ta
thực hiện 1 thí nghiệm khoa học khi
vệ tinh cách mặt đất 250 km. Hãy tính
thời điểm để có thể thực hiện thí
50
t 250
t cos x
2
3
(HS chưa giải được)
HS phát hiện: việc tìm t quy về
việc giải phương trình có dạng
cos x m (HS chưa biết cách giải)
nghiệm đó.
GV: khẳng định đây là một trong HS: tiếp thu kiến thức
các phương trình lượng giác cơ bản và
việc giải phương trình này là nội dung
của bài học hơm nay
(tạm dừng HĐ1)
Bước 2: Tìm giải pháp
HĐ2: Giải PT: sin x m
GV: gợi ý cho học sinh “quy lạ về HS: trực quan phát hiện:
quen” thông qua việc thực hiện VD1.
VD1: Giải PT: sin x
1
2
6
(1)
là 1 nghiệm của (1)
- GV sử dụng đường tròn LG biểu
diễn các giá trị sin
1
2
5
là 1 nghiệm của (1)
6
6
2 là 1 nghiệm của (1)
5
2 là 1 nghiệm của (1)
6
...
Từ đó khái qt tìm được tất cả các
nghiệm của (1):
x
6
k 2 ; x
5
k 2
6
GV nêu vấn đề tương tự:
HS: Tìm phương pháp giải (tương
Giải PT: sin x m ()
tự).
GV: theo dõi gợi ý nếu cần
+Biểu diễn giá trị sin m trên
đường tròn LG
+Trực quan phát hiện:
là 1 nghiệm của ()
là 1 nghiệm của ()
2 là 1 nghiệm của ()
2 là 1 nghiệm của ()
...
Khái quát tìm được tất cả các
nghiệm của PT ()
GV đặt câu hỏi: m > 1 hoặc m 1 HS: phát hiện PT chỉ có nghiệm
thì việc GQVĐ trên đúng hay sai?
khi m 1 .
Bước 3: Trình bày giải pháp
HS: tiếp thu kiến thức
(GV trình bày)
- Điều kiện: x
Nếu m 1 thì PT vơ nghiệm.
Nếu m 1 : Đặt sin m hay nếu
là 1 nghiệm của PT thì:
() sin x sin
x k 2
,k
x k 2
Vậy PT có 2 họ nghiệm là:
x k 2 ; x k 2 , k
+/ Thực hành luyện tập
VD2: Giải PT sin x
3
2
HS:
GV trình bày lời giải mẫu, HS đứng
dưới lớp đọc lời giải theo trình tự câu Do
hỏi của GV (GV gọi HS có học lực
trung bình).
PT có nghiệm khơng?
Hãy tìm 1 nghiệm của phương
3
1 nên PT có nghiệm
2
Khi đó:
3
sin
2
3
sin x sin
3
PT có mấy họ nghiệm, nêu các họ
x k 2
x k 2
nghiệm đó?
3
3
x k 2 x 4 k 2
3
3
trình?
Vậy PT đã cho có 2 họ nghiệm là:
x
VD3: Giải PT sin x
2
2
GV gọi HS lên bảng thực hành (GV
gọi HS có học lực yếu)
3
HS:
Do:
k 2 ; x
4
k 2 , k
3