Tổng hợp kiến thức về Góc giữa hai mặt phẳng lớp 11
1. Định nghĩa góc giữa 2 mặt phẳng
- Khái niệm: Góc giữa 2 mặt phẳng là gì? Góc giữa 2 mặt phẳng là góc được tạo
bởi hai đường thẳng lần lượt vng góc với hai mặt phẳng đó.
Trong khơng gian 3 chiều, góc giữa 2 mặt phẳng cịn được gọi là ‘góc khối’, là
phần khơng gian bị giới hạn bởi 2 mặt phẳng. Góc giữa 2 mặt phẳng được đo bằng
góc giữa 2 đường thẳng trên mặt 2 phẳng có cùng trực giao với giao tuyến của 2
mặt phẳng.
- Tính chất: Từ định nghĩa trên ta có:
Góc giữa 2 mặt phẳng song song bằng 0 độ,
Góc giữa 2 mặt phẳng trùng nhau bằng 0 độ.
2. Cách xác định góc giữa 2 mặt phẳng
Để có thể xác định chính xác góc giữa 2 mặt phẳng bạn áp dụng những cách sau:
Gọi P là mặt phẳng 1, Q là mặt phẳng 2
Trường hợp 1: Hai mặt phẳng (P), (Q) song song hoặc trùng nhau thì góc của 2
mặt phẳng bằng 0,
Trường hợp 2: Hai mặt phẳng (P), (Q) không song song hoặc trùng nhau.
Cách xác định góc giữa hai mặt phẳng
Cách 1: Dựng 2 đường thẳng n và p vng góc lần lượt với 2 mặt phẳng (P), (Q).
Khi đó góc giữa 2 mặt phẳng (P), (Q) là góc giữa 2 đường thẳng n và p.
Cách xác định góc giữa hai mặt phẳng
Cách 2: Để xác định góc giữa 2 mặt phẳng đầu tiên bạn cần xác định giao tuyến
Δ∆của 2 mặt phẳng (P) và (Q). Tiếp theo, bạn tìm một mặt phẳng (R) vng góc
với giao tuyến Δ∆của 2 mặt phẳng (P), (Q) và cắt 2 mặt phẳng tại các giao tuyến a,
b.
⇒Góc giữa 2 mặt phẳng (P), (Q) là góc giữa a và b.
3. Phương pháp tính góc giữa 2 mặt phẳng
Có 2 phương pháp bạn có thể áp dụng để tính góc giữa 2 mặt phẳng:
Phương pháp 1: Sử dụng hệ thức lượng trong tam giác vuông, định lý hàm số sin,
hàm số cos.
Ví dụ 1: Cho hình chóp tứ giác đều S.ABCD có đáy là ABCD và độ dài các cạnh
đáy bằng a, SA = SB = SC = SD = a. Tính cos góc giữa hai mặt phẳng (SAB) và
(SAD).
Phương pháp 2: Dựng mặt phẳng phụ (R) vng góc với giao tuyến c mà (Q)
giao với (R) = a, (P) giao với (R) = b.
4. Bài tập áp dụng
Câu 1: Cho tam giác ABC vuông tại A. Cạnh AB = a nằm trong mặt phẳng(P),
cạnh AC = a√2 , AC tạo với (P) một góc 60°. Chọn khẳng định đúng trong các
khẳng định sau?
A. (ABC) tạo với (P) góc 45°
B. BC tạo với (P) góc 30°
C. BC tạo với (P) góc 45°
D. BC tạo với (P) góc 60°
Câu 2: Cho tứ diện ABCD có AC = AD và BC = BD. Gọi I là trung điểm của CD.
Khẳng định nào sau đây sai ?
A. Góc giữa hai mặt phẳng (ACD) và (BCD) là góc ∠AIB
B. (BCD) ⊥ (AIB)
C. Góc giữa hai mặt phẳng (ABC) và (ABD) là góc ∠CBD
D. (ACD) ⊥ (AIB)
Câu 3: Cho hình chóp S. ABC có SA ⊥ (ABC) và AB ⊥ BC , gọi I là trung điểm
BC. Góc giữa hai mặt phẳng (SBC) và (ABC) là góc nào sau đây?
A. Góc SBA.
B. Góc SCA.
C. Góc SCB.
D. Góc SIA.
Câu 4: Cho hình chóp S.ABCD có đáy ABCD là hình vng và SA ⊥ (ABCD),
gọi O là tâm hình vng ABCD. Khẳng định nào sau đây sai?
A. Góc giữa hai mặt phẳng (SBC) và (ABCD) là góc ∠ABS
B. Góc giữa hai mặt phẳng (SBD) và (ABCD) là góc ∠SOA
C. Góc giữa hai mặt phẳng (SAD) và (ABCD) là góc ∠SDA
D. (SAC) ⊥ (SBD)
Câu 5: Cho hình lập phương ABCD.A1B1C1D1 . Gọi α là góc giữa hai mặt
phẳng (A1D1CB) và (ABCD). Chọn khẳng định đúng trong các khẳng định sau?
A. α = 45°
B. α = 30°
C. α = 60°
D. α = 90°
Câu 6: Cho hình chóp S.ABCD có đáy ABCD là hình vng có tâm O và SA ⊥
(ABCD). Khẳng định nào sau đây sai ?
A. Góc giữa hai mặt phẳng (SBC) và (ABCD) là góc ∠ABS
B. (SAC) ⊥ (SBD)
C. Góc giữa hai mặt phẳng (SBD) và (ABCD) là góc ∠SOA
D. Góc giữa hai mặt phẳng (SAD) và (ABCD) là góc ∠SDA
Câu 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và góc ∠ABC
= 60°. Các cạnh SA ; SB ; SC đều bằng a(√3/2) . Gọi φ là góc của hai mặt phẳng
(SAC) và (ABCD) . Giá trị tanφ bằng bao nhiêu?
A. 2√5
B. 3√5
C. 5√3
D. Đáp án khác
Câu 8: Cho hình chóp S.ABCD có đáy ABCD là hình thang vng tại A và D.
AB = 2a; AD = DC = a. Cạnh bên SA vng góc với đáy và SA = a√2. Chọn
khẳng định sai trong các khẳng định sau?
A. (SBC) ⊥ (SAC)
B. Giao tuyến của (SAB) và (SCD) song song với AB
C. (SDC) tạo với (BCD) một góc 60°
D. (SBC) tạo với đáy một góc 45°
Câu 9: Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = AA’ = a; AD = 2a. Gọi α
là góc giữa đường chéo A’C và đáy ABCD. Tính α .
A. α ≈ 20°45'
B. α ≈ 24°5'
C. α ≈ 30°18'
D. α ≈ 25°48'
Câu 10: Cho hình lập phương ABCD.A'B'C'D'. Xét mặt phẳng (A’BD). Trong các
mệnh đề sau mệnh đề nào đúng?
A. Góc giữa mặt phẳng ( A’BD) và các mặt phẳng chứa các cạnh của hình lập
phương bằng α mà tanα = 1/√2 .
B. Góc giữa mặt phẳng (A’BD) và các mặt phẳng chứa các cạnh của hình lập
phương bằng α mà tanα = 1/√3
C. Góc giữa mặt phẳng (A’BD) và các mặt phẳng chứa các cạnh của hình lập
phương phụ thuộc vào kích thước của hình lập phương.
D. Góc giữa mặt phẳng ( A’BD) và các mặt phẳng chứa các cạnh của hình lập
phương bằng nhau.
Câu 11: Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và đường cao SH
bằng cạnh đáy. Tính số đo góc hợp bởi cạnh bên và mặt đáy.
A. 30°
B. 45°
C. 60°
D. 75°
Câu 12. Cho hình chóp tứ giác đều có cạnh đáy bằng a√2 và chiều cao bằng
a√2/2 . Tính số đo của góc giữa mặt bên và mặt đáy.
A. 30°
B. 45°
C. 60°
D. 75°