Klaus Lüders
Robert O. Pohl
Editors
Pohl’s Introduction
to Physics
Volume 1: Mechanics, Acoustics
and Thermodynamics
With
videos of 77
experiments
Pohl’s Introduction to Physics
Klaus Lüders
Editors
Robert O. Pohl
Pohl’s Introduction
to Physics
Mechanics, Acoustics and
Thermodynamics, Vol. 1
Editors
Klaus Lüders
Fachbereich Physik
Freie Universität Berlin
Berlin, Germany
Robert O. Pohl
Department of Physics
Cornell University
Ithaca, NY, USA
Translated by
Prof. William D. Brewer, PhD,
Fachbereich Physik,
Freie Universität Berlin,
Berlin, Germany
Additional material to this book can be downloaded from
.
ISBN 978-3-319-40044-0
DOI 10.1007/978-3-319-40046-4
ISBN 978-3-319-40046-4 (eBook)
Library of Congress Control Number: 2017944730
© Springer International Publishing Switzerland 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a
warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may
have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Printed on acid-free paper
This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland
Preface to the Second English Edition
The first English edition of Pohl’s “Physical Principles of Mechanics and Acoustics” appeared in
1932 (published by Blackie & Son, Ltd., London and Glasgow). It was based on the second edition
of Pohl’s “Einführung in die Physik, Mechanik und Akustik” (Julius Springer, 1931). The present
new, second English edition, based on the 21st edition of “Pohls Einführung in die Physik”, Vol. 1,
(Mechanik, Akustik und Wärmelehre) (Springer Spektrum, 2017), has now been published after
nearly 85 years!
Following R.W. Pohl’s death in 1976 and the posthumous appearance of the 18th edition in 1983,
since 2004 we have edited three new revised and updated editions, based mainly on the 16th edition
(1964), the 13th edition (1955), and the 18th edition. The major change in this new series was
the addition of 74 videos demonstrating many of the experiments that R.W. Pohl had developed
and used. It is also augmented by comments in the margins when they appeared to be helpful as
additional explanations or were needed to provide more modern information (see the Preface to the
19th edition). We have in addition included the collection of exercises which Pohl provided for the
first English edition, and we have supplemented these (see the Preface to the 20th edition). The
exercises were not included in any of the first 18 German editions. We have furthermore modified
some mathematical formulations, symbols, and units so that they conform to the recommendations
of the International System of Units (SI).
We gratefully acknowledge the help of Professor W.D. Brewer of the Physics Department of the
Free University of Berlin, not only for carrying out the translation of the text with great quality and
speed, but also, and this is probably even more important, for his help with the identification and
clarification of unclear parts in the text and in our comments. The English-language readers will
appreciate the numerous links he added for further information.
We also wish to thank Dr. T. Schneider and Ms. D. Mennecke-Buehler of the Springer-Verlag
for making this edition possible, and for their generous help in carrying out its preparation and
production.
Berlin and Göttingen, March 2017
K. Lüders
R. O. Pohl
v
Preface to the Twenty-First German Edition
One of the most extensive changes in this new edition concerns its format, and is intended to make
the books more readable. “Pohl” will now be published for the first time as an e-book, but also as
a printed version with a new format. The numbering of the chapters, figures, equations etc. now
conforms to the usual system in modern textbooks. The relevant exercises are given at the end of
each chapter.
We have also made major changes to the accompanying videos. In the e-book format, they are now
more readily accessible and can be called up directly using the appropriate links in the text. All
those videos which were produced in cooperation with the Institute for Scientific Films (IWF) in
Göttingen are now available in their original quality and with a spoken text. The remaining videos
were to some extent supplemented and in one case replaced by an improved version. Two new
videos have been added: “Kepler Ellipses” (an excerpt from the opening show of the 2009 “Highlights der Physik” in Cologne), and “The Magdeburg Hemispheres” (an excerpt from a Lichtenberg
Lecture given by Prof. G. Beuermann in Göttingen).
At the same time, we have taken advantage of the opportunity to review all of the text critically.
This has led to a number of clarifications, both in the text and in the figures, including the addition
of several new figures, notably in Chapters 12 and 19.
We owe special thanks to Prof. K. Samwer from the First Physics Institute of the University of
Göttingen for his committed and helpful support of the preparation of this new edition in a variety
of ways. We also wish to give particular thanks to Prof. G. Beuermann, J. Feist and C. Mahn from
that Institute for their various and dedicated assistance. Furthermore, we wish especially to thank
Dr. J. Kirstein from the Physics Didactics group at the Free University of Berlin for his professional
and speedy editing of the videos. We are once again indebted to the Physics Department of the Free
University and its administration for providing working facilities and for the helpful efforts of many
of its members in solving technical problems, especially in connection with computer technology.
Finally, we heartily thank the Springer-Verlag, and in particular Dr. V. Spillner, Ms. M. Maly and
Ms. B. Saglio for their stimulating and agreeable cooperation.
Berlin and Göttingen, July 2015
K. Lüders
R. O. Pohl
From the Preface to the 20th Edition (2008)
The many positive comments from readers of the 19th edition of P OHL’s Introduction to Mechanics,
Acoustics and Thermodynamics have encouraged us to publish a new, revised edition. This also
gave us the opportunity to include some supplementary material which we believe to be important.
In addition to new or revised marginal comments and a few factual clarifications within the text,
this new material consists in particular of additional videos and a set of exercises for the readers.
Also, the sections on osmosis and diffusion from earlier editions have now been included here.
This time, the videos were filmed under our own direction in the new lecture hall in Göttingen, in
addition to several filmed in cooperation with the Physics Didactics group at the Free University
in Berlin. In choosing the topics, we have again been guided on the one hand by our attempt
to present ’lively’ illustrations of physics, and on the other by our intention to document typical
demonstration experiments in the tradition of P OHL, which in some cases are no longer being
shown even in Göttingen.
The major portion of the exercises originates with an earlier English-language edition (from 1932!);
they are thus P OHL’s original exercises. However, we found it desirable to add some more exercises
which deal with questions that either relate directly to the videos or illustrations, or that complement
the experiments, which are sometimes described rather briefly in the text due to lack of space.
These exercises are thus not problem sets in the usual sense, but rather they are intended to help the
reader achieve a better understanding of the sometimes difficult physical concepts described in this
volume, and furthermore they provide additional information.
vii
From the Preface to the 19th Edition (2004)
For over thirty years, from 1919 to 1952, R.W. P OHL gave the introductory lectures in experimental physics at the University of Göttingen for students of a variety of major subjects. The
three-volume set of textbooks based on those lectures pursued a double goal for many years: On
the one hand, they were intended to arouse the readers’ interest in physics; and on the other, they
served as textbooks for teaching basic physics to interested students. Even though in more recent decades, physics education at the university level has adjusted more and more to the needs
of various professions and now includes many specialized courses, the goals of P OHL’s works are
still valid and topical. We are therefore convinced that these books still convey a fascination for
the experimental investigation of physical phenomena and deserve a place on the bookshelves of
modern-day students. That is the reason for the present new edition, initially covering the fields
of mechanics, acoustics and thermodynamics. A second volume will present the most important
topics from electrodynamics and optics.
For many readers, the most noticeable characteristic of P OHL’s books is the large number of experiments which they illustrate and describe in detail; these demonstrate how one must ask questions
of Nature in order to uncover her secrets. The presentation of demonstration experiments using
shadow projections, which fix the attention of the observer on the essentials of the demonstration,
is an integral part of this program. But in addition, we want to provide readers with the opportunity to experience the demonstrations just as they have been presented in the Göttingen lecture hall
for more than 80 years. For this reason, we have complemented this edition with two CD-ROMs
containing short videos. The first of these is an original film of a lecture delivered by R.W. P OHL
in 1952 (Video 1).1 We hope that our readers will enjoy watching these videos as much as we have
enjoyed filming them.
In order to retain the liveliness of the “P OHLs”, as the books are often called, it seemed important
to us to maintain the manner of presentation of their original author as nearly as possible. Since,
however, the first volume alone was available in no fewer than fourteen different editions, we
had to make choices. This book is based mainly on the 16th edition, which appeared in 1964.
Occasionally, however, we refer to other editions, in particular the 13th (1955) and the 18th (1983).
1
Video 1:
“R.W. P OHL Lecturing”
/>This film, shot by FRITZ L UETY (now professor emeritus at the University of Utah in Salt Lake City) while he was a
graduate student in 1952, for the summer celebration of the Göttingen physics institute, shows a lecture on oscillatory
motion given by POHL , with several demonstration experiments that are described in Chap. 11 of this book.
From the Preface to the 19th Edition (2004)
We have as far as possible avoided making changes to the text. Among the exceptions are our more
frequent use of vectors and integrals, i.e. mathematical objects with which today’s readers are in
general familiar. Furthermore, we have adapted the symbols and units to modern usage, in order to
spare our readers the unnecessary annoyance of conversion. Our own attempts at enriching the text
are limited to comments in the margins, which contain both direct explanations of material in the
text and references to newer developments in the areas of physics treated.
ix
From the Preface to the First Edition (1930)
This book contains the first part of my lectures on experimental physics. An effort has been made
to present them as simply as possible. This is intended to make the book accessible not only to
students and teachers, but also to other readers with an interest in physics.
Basic experiments occupy the most prominent place in the presentation. They serve in particular
to clarify the concepts and to provide an overview of the magnitudes of the quantities involved.
Quantitative details are not emphasized.
A large collection of demonstration experiments occupies considerable space. In our lecture hall
in Göttingen, we have a smooth-floored area of 12 5 m2 . The cumbersome accessory of earlier
lecture halls, i.e. the heavy, stationary demonstration table, has long since been dispensed with.
Instead, smaller tables are set up as needed, and they are no more anchored to the floor than is
the furniture in a living room. The clarity of the experimental arrangement and the accessibility
of the individual experimental setups are enhanced considerably by the use of these convenient
tables. Most of them can be rotated around their vertical axis and they are readily adjustable in
height. Thus, the annoying overlap of perspective between different setups can be avoided. The
setup currently being demonstrated can be highlighted and made visible to every member of the
audience by panning the tables.
The apparatus used is as simple as possible and consists of a moderate number of devices. Many of
the setups are described here for the first time. They can be obtained, as can other accessories for
lecture demonstrations, from the Spindler & Hoyer company in Göttingen.
The main portion of the illustrations in the book are based on photographs. Many of the images are
presented as silhouettes. This method of presentation is especially suitable for reproduction in book
form; in addition, it often provides some indication of the dimensions of the experimental setup.
Finally, showing the experiments as silhouettes makes them visible even in large lecture halls,
which demand clear-cut outlines, not interrupted by incidental details such as laboratory stands,
frames etc.
Göttingen, March 1930
R. W. Pohl
R.W. Pohl (1884–1976)
R.W. POHL (1884–1976) discussing color centers (F-centers), elementary crystal lattice defects which were
discovered at his institute and investigated there for many years. He is shown during a visit to the Ansco Research Laboratory in Binghamton, NY in the year 1951. Details of P OHL ’s life and work can be found on the
website of the Max Planck Institute for the History of Science (MPIWG).
There, one can find links to other literature, scientific institutions and websites which offer information and documents on the teaching and research of the famous physicist in Göttingen. In addition, the documentary video
“Simplicity is the Mark of Truth” by Ekkehard S IEKER (Video 1 from Vol. 2) can be found on the MPIWG
web site, together with all the other videos from both volumes and other audiovisual materials, available both
for videostreaming or as downloads.
xi
Contents
Part I Mechanics
1
2
3
Introduction; Distance and Time Measurements . . . . . . . . . . . . . . . . . .
3
1.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
1.2
Distance and Length Measurements. Direct Distance Measurements
4
1.3
The Meter as a Unit of Length . . . . . . . . . . . . . . . . . . . . . . . . . .
6
1.4
Indirect Length Measurements of Very Large Distances . . . . . . . . .
7
1.5
Angle Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
1.6
Time Determinations. True Time Measurements . . . . . . . . . . . . . .
10
1.7
Clocks and Graphical Registration . . . . . . . . . . . . . . . . . . . . . . .
11
1.8
Measurement of Periodic Sequences of Equal Times and Lengths . .
13
1.9
Indirect Time Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . .
15
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16
The Description of Motion: Kinematics . . . . . . . . . . . . . . . . . . . . . . . .
17
2.1
Definition of Motion. Frames of Reference . . . . . . . . . . . . . . . . .
17
2.2
Definition of Velocity. Example of a Velocity Measurement . . . . . .
18
2.3
Definition of Acceleration: The Two Limiting Cases . . . . . . . . . . .
20
2.4
Path Acceleration and Linear Motion . . . . . . . . . . . . . . . . . . . . .
22
2.5
Constant Radial Acceleration and Circular Orbits . . . . . . . . . . . . .
26
2.6
Distinguishing Physical Quantities and Their Numerical Values . . . .
28
2.7
Base Quantities and Derived Quantities . . . . . . . . . . . . . . . . . . .
29
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
Fundamentals of Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
3.1
Force and Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
3.2
Measurements of Force and Mass.
NEWTON’s Fundamental Equation of Motion . . . . . . . . . . . . . . . .
34
xiii
xiv
Contents
3.3
The Units of Force and Mass. Expressions Containing Physical
Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
38
Density and Specific Volume . . . . . . . . . . . . . . . . . . . . . . . . . . .
38
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
39
Applications of NEWTON’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . .
41
4.1
Constant Acceleration in a Straight Line . . . . . . . . . . . . . . . . . . .
41
4.2
Circular Motion and Radial Forces . . . . . . . . . . . . . . . . . . . . . . .
44
4.3
Sinusoidal Oscillations: The Gravity Pendulum as a Special Case . . .
49
4.4
Motions Around a Central Point . . . . . . . . . . . . . . . . . . . . . . . .
54
4.5
Elliptical Orbits and Elliptically Polarized Oscillations . . . . . . . . . .
56
4.6
L ISSAJOUS Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
57
4.7
KEPLER’s Elliptical Orbits and the Law of Gravity . . . . . . . . . . . . . .
58
4.8
The Gravitational Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . .
60
4.9
The Law of Gravity and Celestial Mechanics . . . . . . . . . . . . . . . .
62
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
65
Three Useful Concepts: Work, Energy, and Momentum . . . . . . . . . . . . .
67
5.1
Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
67
5.2
Work and Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
67
5.3
Energy and Its Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . .
71
5.4
First Applications of the Conservation Law of Mechanical Energy . .
74
5.5
Impulse and Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
75
5.6
Momentum Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
76
5.7
First Applications of Momentum Conservation . . . . . . . . . . . . . .
77
5.8
Momentum and Energy Conservation During Elastic Collisions
of Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
79
Momentum Conservation in Inelastic Collisions
and the Ballistic Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . .
80
5.10
Non-Central Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
82
5.11
Motions Against Dissipative Forces . . . . . . . . . . . . . . . . . . . . . .
82
5.12
The Production of Forces with and without Consuming Power . . .
86
5.13
Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
87
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
88
3.4
4
5
5.9
Contents
6
Rotational Motion of Rigid Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . .
91
6.1
Introductory Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
91
6.2
Definition of Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
91
6.3
The Production of Known Torques, the Constant D*, and the
Angular Velocity ! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
94
The Moment of Inertia, Equation of Motion for Rotations,
Torsional Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
97
6.4
6.5
The Physical Pendulum and the Beam Balance . . . . . . . . . . . . . . . 102
6.6
Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.7
Free Axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.8
Free Axes of Humans and Animals . . . . . . . . . . . . . . . . . . . . . . . 111
6.9
Definition of the Spinning Top and Its Three Axes . . . . . . . . . . . . 112
6.10
The Nutation of a Force-Free Top and Its Fixed Spin Axis . . . . . . . . 115
6.11
Tops Acted on by Torques. Precession of the Angular-Momentum
Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.12
Precession Cone with Nutation . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.13
A Top with Only Two Degrees of Freedom . . . . . . . . . . . . . . . . . 123
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7
Accelerated Frames of Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.1
Preliminary Remarks. Inertial Forces . . . . . . . . . . . . . . . . . . . . . . 129
7.2
Frames of Reference with Only Path Acceleration . . . . . . . . . . . . 130
7.3
Frames of Reference with Radial Acceleration.
Centrifugal and CORIOLIS Forces . . . . . . . . . . . . . . . . . . . . . . . . 133
7.4
Vehicles as Accelerated Frames of Reference . . . . . . . . . . . . . . . . 141
7.5
The Gravity Pendulum as a Plumb Bob in Accelerated Vehicles . . . . 144
7.6
Earth as an Accelerated Frame of Reference.
Centrifugal Acceleration of Bodies at Rest . . . . . . . . . . . . . . . . . 146
7.7
Earth as an Accelerated Frame of Reference. CORIOLIS Force
on Moving Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8
Some Properties of Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.1
Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.2
Elastic Deformation, Flow and Solidification . . . . . . . . . . . . . . . . 153
8.3
HOOKE’s Law and POISSON’s Relation . . . . . . . . . . . . . . . . . . . . . 155
8.4
Shear Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
xv
xvi
Contents
8.5
Normal, Shear and Principal Stress . . . . . . . . . . . . . . . . . . . . . . . 157
8.6
Bending and Twisting (Torsion) . . . . . . . . . . . . . . . . . . . . . . . . . 160
8.7
Time Dependence of Deformation.
Elastic Aftereffects and Hysteresis . . . . . . . . . . . . . . . . . . . . . . . 165
8.8
Rupture Strength and Specific Surface Energy of Solids . . . . . . . . 167
8.9
Sticking and Sliding Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
8.10
Rolling Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
9
Liquids and Gases at Rest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
9.1
The Free Displacements of Liquid Molecules . . . . . . . . . . . . . . . . 175
9.2
Pressure in Liquids. Manometers . . . . . . . . . . . . . . . . . . . . . . . . 178
9.3
The Isotropy of Pressure and Its Applications . . . . . . . . . . . . . . . . 179
9.4
The Pressure Distribution in a Gravitational Field. Buoyancy . . . . . 182
9.5
Cohesion of Liquids: Tensile Strength,
Specific Surface Energy, and Surface Tension . . . . . . . . . . . . . . . . 185
9.6
Gases as Low-Density Liquids Without Surfaces.
BOYLE’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
9.7
A Model Gas. Pressure Due to Random Molecular Motions
(Thermal Motion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
9.8
The Fundamental Equation of the Kinetic Theory of Gases.
Velocity of the Gas Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . 196
9.9
The Earth’s Atmosphere. Atmospheric Pressure in Demonstration
Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
9.10
The Pressure Distribution of Gases in the Gravitational Field.
The Barometric Pressure Formula . . . . . . . . . . . . . . . . . . . . . . . . 202
9.11
Static Buoyancy in Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
9.12
Gases and Liquids in Accelerated Frames of Reference . . . . . . . . . 206
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
10
Motions in Liquids and Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
10.1
Three Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
10.2
Internal Friction and Boundary Layers . . . . . . . . . . . . . . . . . . . . 211
10.3
Laminar Flow: Fluid Motions Which Occur when Friction Plays
a Decisive Role . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
10.4
The REYNOLDS Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
10.5
Frictionless Fluid Motion and BERNOULLI’s Equation . . . . . . . . . . . 220
Contents
10.6
Flow Around Obstacles. Sources and Sinks. Irrotational
or Potential Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
10.7
Rotations of Fluids and Their Measurement.
The Irrotational Vortex Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
10.8
Vortices and Separation Surfaces in Nearly Frictionless Fluids . . . . . 232
10.9
Flow Resistance and Streamline Profiles . . . . . . . . . . . . . . . . . . . 234
10.10 The Dynamic Transverse Force or Lift . . . . . . . . . . . . . . . . . . . . . 237
10.11 Applications of the Transverse Force . . . . . . . . . . . . . . . . . . . . . 241
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Part II Vibrations and Waves
11
Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
11.1
Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
11.2
Producing Undamped Vibrations . . . . . . . . . . . . . . . . . . . . . . . . 247
11.3
The Synthesis of Non-Sinusoidal Periodic Processes from Sine Curves 251
11.4
The Spectral Representation of Complex Oscillatory Processes . . . . 256
11.5
Elastic Transverse Vibrations of Linear Solid Bodies Under Tensile
Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
11.6
Elastic Longitudinal and Torsional Vibrations of Stressed Linear
Solid Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
11.7
Elastic Vibrations in Columns of Liquids and Gases . . . . . . . . . . . . 265
11.8
Normal Modes of Stiff Linear Bodies . . . . . . . . . . . . . . . . . . . . . 269
11.9
Normal Modes of 2-Dimensional and 3-Dimensional Bodies.
Thermal Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
11.10 Forced Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
11.11 Energy Transfer Stimulated by Resonance . . . . . . . . . . . . . . . . . . 278
11.12 The Importance of Resonance for the Detection
of Pure Sinusoidal Oscillations. Spectral Apparatus . . . . . . . . . . . 279
11.13 The Importance of Forced Oscillations for Distortion-Free Recording
of Non-Sinusoidal Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . 281
11.14 The Amplification of Oscillations . . . . . . . . . . . . . . . . . . . . . . . . 282
11.15 Two Coupled Oscillators and Their Forced Oscillations . . . . . . . . . 283
11.16 Damped and Undamped Wobble Oscillations . . . . . . . . . . . . . . . 286
11.17 Relaxation (or Toggle) Oscillations . . . . . . . . . . . . . . . . . . . . . . . 288
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
xvii
xviii
Contents
12
Travelling Waves and Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
12.1
Travelling Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
12.2
The DOPPLER Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
12.3
Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
12.4
Interference with Two Slightly Different Source Frequencies . . . . . 296
12.5
Standing Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
12.6
The Propagation of Travelling Waves . . . . . . . . . . . . . . . . . . . . . 299
12.7
Reflection and Refraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
12.8
Image Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
12.9
Total Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
12.10 Shockwaves when the Wave Velocity Is Exceeded . . . . . . . . . . . . 307
12.11 HUYGHENS’ Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
12.12 Model Experiments on Wave Propagation . . . . . . . . . . . . . . . . . 309
12.13 Quantitative Results for Diffraction by a Slit . . . . . . . . . . . . . . . . 311
12.14 F RESNEL’s Zone Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
12.15 Narrowing of the Interference Fringes
by a Lattice Arrangement of the Wave Sources . . . . . . . . . . . . . . 317
12.16 Interference of Wave Trains of Limited Length . . . . . . . . . . . . . . 321
12.17 The Production of Longitudinal Waves and Their Velocities . . . . . . 321
12.18 High-Frequency Longitudinal Waves in Air. The Acoustic Replica
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
12.19 The Radiation Pressure of Sound. Sound Radiometers . . . . . . . . . 326
12.20 Reflection, Refraction, Diffraction and Interference
of 3-Dimensional Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
12.21 The Origin of Waves on Liquid Surfaces . . . . . . . . . . . . . . . . . . . 336
12.22 Dispersion and the Group Velocity . . . . . . . . . . . . . . . . . . . . . . . 341
12.23 The Excitation of Waves by Aperiodic Processes . . . . . . . . . . . . . . 345
12.24 The Energy of a Sound Field. The Wave Resistance for Sound Waves 347
12.25 Sound Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
12.26 Aperiodic Sound Sources and Supersonic Velocities . . . . . . . . . . . 354
12.27 Sound Receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
12.28 The Sense of Hearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
12.29 Phonometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
12.30 The Human Ear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
Contents
Part III Thermodynamics
13
Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
13.1
Preliminary Remarks. Definition of the Concept
‘Amount of Substance’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
13.2
The Definition and Measurement of Temperature . . . . . . . . . . . . 370
13.3
The Definitions of the Concepts of Heat and Heat Capacity . . . . . . 374
13.4
Latent Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
14
The First Law and the Equation of State of Ideal Gases . . . . . . . . . . . . . 381
14.1
Work of Expansion and Technical Work . . . . . . . . . . . . . . . . . . . 381
14.2
Thermal State Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
14.3
The Internal Energy U and the First Law . . . . . . . . . . . . . . . . . . . 384
14.4
The State Function Enthalpy, H . . . . . . . . . . . . . . . . . . . . . . . . . 386
14.5
The Two Specific Heats, cp and cV . . . . . . . . . . . . . . . . . . . . . . . 388
14.6
The Thermal Equation of State of Ideal Gases.
Absolute Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
14.7
Addition of Partial Pressures . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
14.8
The Caloric Equations of State of Ideal Gases.
GAY-L USSAC’s Throttle Experiment . . . . . . . . . . . . . . . . . . . . . . . 395
14.9
Changes of State of Ideal Gases . . . . . . . . . . . . . . . . . . . . . . . . . 398
14.10 Applications of Polytropic and Adiabatic
Changes of State. Measurements of Ä . . . . . . . . . . . . . . . . . . . . 403
14.11 Pneumatic Motors and Gas Compressors . . . . . . . . . . . . . . . . . . . 406
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
15
Real Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
15.1
Phase Changes of Real Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
15.2
Distinguishing the Gas from the Liquid . . . . . . . . . . . . . . . . . . . . 411
15.3
The VAN DER WAALS Equation of State for Real Gases . . . . . . . . . . 414
15.4
The J OULE-THOMSON Throttle Experiment . . . . . . . . . . . . . . . . . . 416
15.5
The Production of Low Temperatures and Liquefaction of Gases . . 418
15.6
Technical Liquefaction Processes and the Separation of Gases . . . . 420
15.7
Vapor Pressure and Boiling Temperature. The Triple Point . . . . . . 421
15.8
Hindrance of the Phase Transition Liquid ! Solid:
Supercooled Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
15.9
Hindrance of the Phase Transition Liquid $ Gas:
The Tensile Strength of Liquids . . . . . . . . . . . . . . . . . . . . . . . . . 425
Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
xix
xx
Contents
16
17
Heat as Random Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
16.1
Temperature on the Molecular Scale . . . . . . . . . . . . . . . . . . . . . 429
16.2
The Recoil of Gas Molecules Upon Reflection.
The “Radiometer Force” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
16.3
The Velocity Distribution and the Mean Free Path
of the Gas Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
16.4
Molar Heat Capacities in a Molecular Picture.
The Equipartition Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
16.5
Osmosis and Osmotic Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . 440
16.6
The Experimental Determination of BOLTZMANN’s Constant k
from the Barometric Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 445
16.7
Statistical Fluctuations and the Particle Number . . . . . . . . . . . . . 447
16.8
The BOLTZMANN Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
Transport Processes: Diffusion and Heat Conduction . . . . . . . . . . . . . . . 453
17.1
Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
17.2
Diffusion and Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
17.3
F ICK’s First Law and the Diffusion Constant . . . . . . . . . . . . . . . . . 454
17.4
Quasi-Stationary Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
17.5
Non-Stationary Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
17.6
General Considerations on Heat Conduction and Heat Transport . . 460
17.7
Stationary Heat Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
17.8
Non-Stationary Heat Conduction . . . . . . . . . . . . . . . . . . . . . . . . 464
17.9
Transport Processes in Gases and Their Lack
of Pressure Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
17.10 Determination of the Mean Free Path . . . . . . . . . . . . . . . . . . . . 468
17.11 The Mutual Relations of Transport Processes in Gases . . . . . . . . . . 470
18
The State Function Entropy, S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
18.1
Reversible Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
18.2
Irreversible Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
18.3
Measurement of the Irreversibility Using
the State Function entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
18.4
Entropy in a Molecular Picture . . . . . . . . . . . . . . . . . . . . . . . . . 482
18.5
Examples of the Calculation of the Entropy . . . . . . . . . . . . . . . . . 483
18.6
Application of Entropy to Reversible Changes of State
in Closed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
18.7
The H-S or MOLLIER Diagram with Applications.
Supersonic Gas Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
Contents
19
Converting Heat into Work. The Second Law . . . . . . . . . . . . . . . . . . . . 495
19.1
Heat Engines and the Second Law . . . . . . . . . . . . . . . . . . . . . . . 495
19.2
The CARNOT Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
19.3
The S TIRLING Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
19.4
Technical Heat Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
19.5
Heat Pumps (Refrigeration Devices) . . . . . . . . . . . . . . . . . . . . . . 501
19.6
The Thermodynamic Definition of Temperature . . . . . . . . . . . . . . 504
19.7
Pneumatic Motors. Free and Bound Energy . . . . . . . . . . . . . . . . . 504
19.8
Examples of Applications of the Free Energy . . . . . . . . . . . . . . . . 506
19.9
The Human Body as an Isothermal Engine . . . . . . . . . . . . . . . . . 509
Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
Table of Physical Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
Solutions to the Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
xxi
List of Videos
All of the videos for this volume, and also those for Vol. 2, may be downloaded from http://extra.
springer.com.
1 R.W. POHL Lecturing
. . . . . . . . . . . . . . . . . . . . . . . viii, 261, 264, 267, 274, 282, 283
Part I Mechanics
2.1 “Free fall”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23, 24
3.1 “Action D Reaction”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1 “MAXWELL’s wheel”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 “Dynamic stability of a bicycle chain”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 “Circular oscillations”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 “L ISSAJOUS figures”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 “KEPLER’s elliptical orbits”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1 “Dancing steel ball”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 “Conservation of linear momentum”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77, 78
5.3 “Elastic collisions in slow motion”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4 “Elastic collisions”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80, 89
5.5 “Measuring the velocity of a bullet”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
xxiii
xxiv
List of Videos
5.6 “Non-central collisions”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.1 “Twisting a steel bar”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96, 163, 173
6.2 “Moments of inertia”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3 “Conservation of angular momentum using a rotating chair”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.4 “Angular momentum as a vector”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.5 “The physics of swinging”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.6 “Rotation around free axes”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.7 “Supple shaft as stable axis of rotation”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46, 109
6.8 “Free rotation of a rectangular parallelepiped”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.9 “The three axes of a top”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.10 “Precession of a spinning top”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119, 127
6.11 “Precession of a rotating wheel”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119, 122
6.12 “Physics of riding a bicycle with no hands”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.13 “Stabilization using a spinning top”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.1 “Freely falling frame of reference”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.2 “Simple pendulum in a rotating reference frame”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138, 139
7.3 “Gyrocompass”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.4 “Torsional pendulum on a rotating table”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.5 “FOUCAULT’s pendulum”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54, 148, 149, 151
8.1 “Elastic deformation: HOOKE’s law”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154, 173
List of Videos
8.2 “Bending a rod”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160, 162, 173
8.3 “Plastic deformation, rupture strength”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167, 168
8.4 “Reducing sliding friction”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
9.1 “BROWNian motion”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
9.2 “The Compressibility of water”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
9.3 “Buoyancy in a model fluid”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
9.4 “The tensile strength of water”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169, 187, 426, 431
9.5 “Surface work”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
9.6 “Coalescence of Hg droplets”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192, 209
9.7 “A Model Gas: Its barometric density distribution”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196, 204
9.8 “Magdeburg hemispheres” (Otto von Guericke’s experiment)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
9.9 “BEHN’s tube”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
10.1 “Model experiments for streamlines”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 215, 217, 221, 225, 239
10.2 “Turbulence of flowing water”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
10.3 “Fluid Flow around obstacles”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220, 226, 235, 237–239
10.4 “Smoke rings”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
10.5 “MAGNUS effect”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Part II Vibrations and Waves
11.1 “Vibrations of a tuning fork”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
11.2 “Transverse normal modes of a stretched rubber band”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
xxv
xxvi
List of Videos
11.3 “Transverse vibrations of a string”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262, 263
11.4 “Longitudinal vibrations of a helical spring”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
11.5 “HELMHOLTZ resonators”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
11.6 “Free and forced oscillations of a torsional pendulum (P OHL’s pendulum)”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274, 275, 290
11.7 “Forced oscillations with a pocket watch”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
11.8 “Coupled pendulums: Force coupling”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283, 285
11.9 “Acceleration coupling and chaotic oscillations”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284, 290
11.10 “Coupled oscillations with damping”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
11.11 “Antirolling tank”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
11.12 “Wobble oscillations”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
12.1 “Model of a travelling wave”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
12.2 “Experiments with water waves”
. . . . . . . . . . . . . . . . . 293, 294, 295–299, 300–303, 305, 341, 347
12.3 “The acoustic radiometer”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
12.4 Fresnel’s zones
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Part III Thermodynamics
13.1 “Model experiment on thermal expansion and evaporation”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
14.1 “Adiabatic changes of state”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
14.2 “Compressed-air motor”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
15.1 “Liquefaction of oxygen”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
15.2 “Liquid and solid nitrogen”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
List of Videos
15.3 “Solid carbon dioxide (dry ice)”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
16.1 “Model experiments on diffusion and osmosis”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175, 196, 432, 443
16.2 “Crookes’ radiometer (light mill)”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
19.1 “Operation of a S TIRLING engine”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498, 500, 502
19.2 “Technical Version of a S TIRLING engine”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
19.3 “Heat pump/refrigerator”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
xxvii