Tải bản đầy đủ (.pdf) (1,161 trang)

Sadhu singh sukumar pati thermal engineering pearson india 2018

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (24.39 MB, 1,161 trang )


About Pearson
Pearson is the world’s learning company, with presence across 70 countries
worldwide. Our unique insights and world-class expertise comes from a long
history of working closely with renowned teachers, authors and thought leaders,
as a result of which, we have emerged as the preferred choice for millions of
teachers and learners across the world.
We believe learning opens up opportunities, creates fulfilling careers and hence
better lives. We hence collaborate with the best of minds to deliver you classleading products, spread across the Higher Education and K12 spectrum.
Superior learning experience and improved outcomes are at the heart of
everything we do. This product is the result of one such effort.
Your feedback plays a critical role in the evolution of our products and you can
contact us – We look forward to it.

www.pdfgrip.com
A01_THERMAL ENGINEERING_SE_XXXX_A01.indd 1

6/20/2018 9:29:10 AM


Thispageisintentionallyleftblank

www.pdfgrip.com


thermal
Engineering
Sadhu Singh

Former Professor and Head
Mechanical Engineering Department


and
Dean, Faculty of Engineering and Technology
Govind Ballabh Pant University of Agriculture and Technology, Uttarakhand
and
Former Director (Colleges), Punjab Technical University, Jalandhar, Punjab

Sukumar Pati

Assistant Professor
Department of Mechanical Engineering
National Institute of Technology Silchar, Assam

www.pdfgrip.com
A01_THERMAL ENGINEERING_SE_XXXX_A01.indd 3

6/20/2018 9:29:14 AM


Copyright © 2018 Pearson India Education Services Pvt. Ltd
Published by Pearson India Education Services Pvt. Ltd, CIN: U72200TN2005PTC057128.
No part of this eBook may be used or reproduced in any manner whatsoever without the
publisher’s prior written consent.
This eBook may or may not include all assets that were part of the print version.
The publisher reserves the right to remove any material in this eBook at any time.
ISBN 978-93-528-6668-7
eISBN 9789353063320
Head Office: 15th Floor, Tower-B, World Trade Tower, Plot No. 1, Block-C, Sector 16,
Noida 201 301, Uttar Pradesh, India.
Registered Office: 4th Floor, Software Block, Elnet Software City, TS 140, Block 2 & 9,
Rajiv Gandhi Salai, Taramani, Chennai - 600 113, Tamil Nadu, India.

Fax: 080-30461003, Phone: 080-30461060
Website: in.pearson.com, Email:

www.pdfgrip.com


Dedicated to my Parents
—Sadhu Singh
Dedicated to my beloved Parents
Late Sakti Pada Pati and Usha Rani Pati
—Sukumar Pati

www.pdfgrip.com
A01_THERMAL ENGINEERING_SE_XXXX_A01.indd 5

6/20/2018 9:29:14 AM


Thispageisintentionallyleftblank

www.pdfgrip.com


Brief Contents

Preface

xxvii

About the Authors


xxix

Chapter 1 Fuels and Combustion

1

Chapter 2 Properties of Steam

51

Chapter 3 Steam Generators

87

Chapter 4 Steam Power Cycles

161

Chapter 5 Steam Engines

214

Chapter 6 Flow Through Steam Nozzles

253

Chapter 7 Steam Turbines

316


Chapter 8 Steam Condensers

386

Chapter 9 Gas Power Cycles

423

Chapter 10 Internal Combustion Engine Systems

485

Chapter 11 Performance of Internal Combustion Engines

622

Chapter 12 Reciprocating Air Compressors

690

Chapter 13 Rotary Air Compressors

735

Chapter 14 Centrifugal Air Compressors

744

Chapter 15 Axial Flow Air Compressors


789

Chapter 16 Gas Turbines

840

www.pdfgrip.com
A01_THERMAL ENGINEERING_SE_XXXX_A01.indd 7

6/20/2018 2:44:41 PM


Brief
viiiContents

Chapter 17  Jet Propulsion

922

Chapter 18  Introduction to Refrigeration961
Chapter 19  Vapour Compression and Vapour Absorption Systems

999

Chapter 20  Air-Conditioning and Psychrometrics

1034

Appendix A


1091

Index1121

www.pdfgrip.com
A01_THERMAL ENGINEERING_SE_XXXX_A01.indd 8

6/20/2018 9:29:14 AM


Contents

Preface

xxvii

About the Authors

xxix

Chapter 1

Fuels and Combustion
1.1
1.2
1.3

1.4


1.5

1.6

1.7
1.8

1.9

Introduction 1
Classification of Fuels 1
Solid Fuels 2
1.3.1 Primary Fuels 2
1.3.2 Secondary Fuels 3
1.3.3 Desirable Properties of Coal 3
1.3.4 Ranking of Coal 4
1.3.5 Grading of Coal 4
Liquid Fuels 4
1.4.1 Advantages and Disadvantages of Liquid Fuels Over
Solid Fuels 5
1.4.2 Calorific Value of Liquid Fuels 5
1.4.3 Desirable Properties of Liquid Fuels 5
Gaseous Fuels 6
1.5.1 Calorific Value of Gaseous Fuels 6
1.5.2 Advantages and Disadvantages of Gaseous Fuels
1.5.3 Important Properties of Gaseous Fuels 7
Liquefied Gases 7
1.6.1 Liquefied Petroleum Gas 8
1.6.2 Liquefied or Compressed Natural Gas 8
Biofuels 8

Analysis of Fuels 9
1.8.1 Proximate Analysis 9
1.8.2 Ultimate Analysis 9
Calorific Value of Fuels 9

1

7

www.pdfgrip.com
A01_THERMAL ENGINEERING_SE_XXXX_A01.indd 9

6/20/2018 2:44:42 PM


xContents

1.10  Combustion of Fuels  10
1.11  Combustion of Hydrocarbon Fuel  11
1.12 
Minimum Air Required for Complete Combustion
  of Solid/Liquid Fuels  11
1.13  Conversion of Volumetric Analysis to Mass (or Gravimetric)
  Analysis and Vice-Versa  12
1.14  Determination of Air Supplied  13
1.14.1  Percentage of Carbon by Mass in Fuel and Volumetric
  Analysis is Known  13
1.14.2  Excess Air Supplied  14
1.15  Determination of Percentage of Carbon in Fuel Burning
  to CO and CO2  14

1.16  Determination of Minimum Quantity of Air Required
  for Complete Combustion of Gaseous Fuel  15
1.17  Determination of Excess Air Supplied for Gaseous Fuel  15
1.18  Flue Gas Analysis  16
1.18.1  Orsat Apparatus Construction  16
1.19  Bomb Calorimeter  17
1.19.1  Construction 17
1.19.2  Working 17
1.19.3  Cooling Correction  19
1.20  Boys Gas Calorimeter  19
1.20.1  Construction 19
1.20.1  Working 20
Summary for Quick Revision ·  Multiple-choice Questions ·  Review
Questions ·  Exercises ·  Answers to Multiple-choice Questions

Chapter 2  Properties of Steam                 51
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 

Pure Substance  51
Constant Pressure Formation of Steam  51
Properties of Steam  52
Steam Tables  55
Temperature−Entropy Diagram for Water and Steam  55
Enthalpy−Entropy or Mollier Diagram of Steam  56

Various Processes for Steam  57
2.7.1  Constant Volume Process  57
2.7.2  Constant Pressure Process  58
2.7.3  Isothermal Process  59
2.7.4  Hyperbolic Process  59
2.7.5  Reversible Adiabatic or Isentropic Process  60
2.7.6  Polytropic Process  61
2.7.7  Throttling Process  62
2.8  Determination of Dryness Fraction of Steam  62

www.pdfgrip.com
A01_THERMAL ENGINEERING_SE_XXXX_A01.indd 10

6/20/2018 9:29:14 AM


Contents
xi

2.8.1  Barrel Calorimeter  63
2.8.2  Separating Calorimeter  64
2.8.3  Throttling Calorimeter  65
2.8.4  Combined Separating and Throttling Calorimeter  66
Summary for Quick Revision ·  Multiple-choice Questions ·  Review
Questions ·  Exercises ·  Answers to Multiple-choice Questions

Chapter 3  Steam Generators                 87
  3.1 
 3.2 
 3.3 

 3.4 
 3.5 
 3.6 

Introduction 87
Classification of Steam Generators  87
Comparison of Fire Tube and Water Tube Boilers  88
Requirements of a Good Boiler  89
Factors Affecting Boiler Selection  89
Description of Boilers  89
3.6.1  Fire Tube Boilers  89
3.6.2  Water Tube Boilers  93
  3.7  High Pressure Boilers  94
3.7.1  Boiler Circulation  95
3.7.2  Advantages of Forced Circulation Boilers  95
3.7.3  LaMont Boiler  96
3.7.4  Benson Boiler  97
3.7.5  Loeffler Boiler  97
3.7.6  Schmidt-Hartmann Boiler  98
3.7.7  Velox Boiler  98
3.7.8  Once-through Boiler  99
 3.8  Circulation 99
 3.9  Steam Drum  100
3.9.1  Mechanism of Separation of Moisture in Drum  100
3.10  Fluidised Bed Boiler  102
3.10.1  Bubbling Fluidised Bed Boiler (BFBB)  102
3.10.2  Advantages of BFBB  103
3.11  Boiler Mountings  103
3.11.1  Water Level Indicator  104
3.11.2  Pressure Gauge  104

3.11.3  Steam Stop Valve  105
3.11.4  Feed Check Valve  105
3.11.5  Blow-Down Cock  106
3.11.6  Fusible Plug  106
3.11.7  Safety Valves  107
3.11.8  High Steam and Low Water Safety Valve  108
3.12  Boiler Accessories  109
3.12.1  Air Preheater  110
3.12.2  Economiser 111
3.12.3  Superheater 112

www.pdfgrip.com
A01_THERMAL ENGINEERING_SE_XXXX_A01.indd 11

6/20/2018 9:29:14 AM


xiiContents

3.13  Steam Accumulators  113
3.13.1  Variable Pressure Accumulator  113
3.13.2  Constant Pressure Accumulator  114
3.14  Performance of Steam Generator  115
3.14.1  Evaporation Rate  115
3.14.2  Performance 115
3.14.3  Boiler Thermal Efficiency  116
3.14.4  Heat Losses in a Boiler Plant  116
3.14.5  Boiler Trial and Heat Balance Sheet  117
3.15  Steam Generator Control  130
3.16  Electrostatic Precipitator  131

3.17  Draught 136
3.17.1  Classification of Draught  136
3.17.2  Natural Draught  136
3.17.3  Height and Diameter of Chimney  137
3.17.4 
Condition for Maximum Discharge
 Through Chimney 138
3.17.5  Efficiency of Chimney  139
3.17.6  Advantages and Disadvantages of Natural Draught  140
3.17.7  Draught Losses  140
3.17.8  Artificial Draught  140
3.17.9  Comparison of Forced and Induced Draughts  142
3.17.10  Comparison of Mechanical and Natural Draughts  142
3.17.11  Balanced Draught  142
3.17.12  Steam Jet Draught  143
Summary for Quick Revision ·  Multiple-choice Questions ·  Explanatory
Notes ·  Review Questions ·  Exercises ·  Answers to Multiple-choice
Questions

Chapter 4  Steam Power Cycles               161
4.1 Introduction 161
4.2  Carnot Vapour Cycle  161
4.2.1  Drawbacks of Carnot Cycle  163
4.3 Rankine Cycle 165
4.3.1  Analysis of Rankine Cycle  166
4.3.2  Effect of Boiler and Condenser Pressure  168
4.4  Methods of Improving Efficiency  170
4.4.1 Reheat Cycle 170
4.4.2  Effect of Pressure Drop in the Reheater  171
4.5 Regeneration 174

4.5.1  Regenerative Cycle with Open Heaters  176
4.5.2  Regenerative Cycle with Closed Heaters  177
4.6 Reheat-Regenerative Cycle 182
4.7  Properties of an Ideal Working Fluid  183

www.pdfgrip.com
A01_THERMAL ENGINEERING_SE_XXXX_A01.indd 12

6/20/2018 9:29:14 AM


Contents
xiii

4.8  Binary Vapour Cycles  184
4.9 Combined Power and Heating Cycle-Cogeneration  187
Summary for Quick Revision ·  Multiple-choice Questions ·  Review
Questions ·  Exercises ·  Answers to Multiple-choice Questions

Chapter 5  Steam Engines                   214
 5.1 Introduction 214
  5.2  Classification of Steam Engines  214
  5.3  Constructional Features of a Steam Engine  215
5.3.1  Steam Engine Parts  216
  5.4  Terminology Used in Steam Engine  217
  5.5  Working of a Steam Engine  218
 5.6 Rankine Cycle 219
  5.7  Modified Rankine Cycle  221
  5.8  Hypothetical or Theoretical Indicator Diagram  222
  5.9  Actual Indicator Diagram  223

5.10  Mean Effective Pressure  224
5.10.1 Without Clearance 224
5.10.2 With Clearance 225
5.10.3  With Clearance and Compression  227
5.10.4 With Clearance and Polytropic Expansion
 and Compression 228
5.11  Power Developed and Efficiencies  230
5.11.1 Indicated Power 230
5.11.2 Brake Power 231
5.11.3  Efficiencies of Steam Engine  232
5.12  Governing of Steam Engines  232
5.13  Saturation Curve and Missing Quantity  243
5.14  Heat Balance Sheet  244
5.15 Performance Curves 246
Summary for Quick Revision ·  Multiple-choice Questions ·  Review
Questions ·  Exercises ·  Answers to Multiple-choice Questions

Chapter 6  Flow Through Steam Nozzles           253
6.1 Introduction 253
6.2 Continuity Equation 254
6.3  Velocity of Flow of Steam Through Nozzles  254
6.3.1  Flow of Steam Through the Nozzle  255
6.4  Mass Flow Rate of Steam  255
6.5  Critical Pressure Ratio  256
6.6 Maximum Discharge 257
6.7  Effect of Friction on Expansion of Steam  258

www.pdfgrip.com
A01_THERMAL ENGINEERING_SE_XXXX_A01.indd 13


6/20/2018 9:29:14 AM


xivContents

 6.8 Nozzle Efficiency 259
  6.9  Supersaturated or Metastable Flow Through a Nozzle  260
6.10  Isentropic, One-Dimensional Steady Flow Through a Nozzle  269
6.10.1 Relationship between Actual and Stagnation
 Properties 270
6.11  Mass Rate of Flow Through an Isentropic Nozzle  273
6.11.1 Effect of Varying the Back Pressure on Mass Flow Rate  274
6.12  Normal Shock in an Ideal Gas Flowing Through a Nozzle  277
Summary for Quick Revision ·  Multiple-choice Questions ·  Explanatory
Notes ·  Review Questions ·  Exercises ·  Answers to Multiple-choice
Questions

Chapter 7  Steam Turbines                  316
  7.1 
  7.2 
  7.3 
  7.4 
  7.5 

Principle of Operation of Steam Turbines  316
Classification of Steam Turbines  316
Comparison of Impulse and Reaction Turbines  318
Compounding of Impulse Turbines  319
Velocity Diagrams for Impulse Steam Turbine  321
7.5.1  Condition for Maximum Blade Efficiency  324

7.5.2  Maximum Work Done  325
7.5.3  Velocity Diagrams for Velocity Compounded
 Impulse Turbine 325
7.5.4  Effect of Blade Friction on Velocity Diagrams  327
7.5.5  Impulse Turbine with Several Blade Rings  328
  7.6  Advantages and Limitations of Velocity Compounding  329
7.6.1 Advantages 329
7.6.2 Limitations 329
  7.7  Velocity Diagrams for Impulse-Reaction Turbine  330
 7.8 Reheat Factor 333
  7.9  Losses in Steam Turbines  335
7.10 Turbine Efficiencies 335
7.11  Governing of Steam Turbines  336
7.12 Labyrinth Packing 338
7.13  Back Pressure Turbine  339
7.14  Pass Out or Extraction Turbine  340
7.15 Co-Generation 341
7.16  Erosion of Steam Turbine Blades  355
Summary for Quick Revision ·  Multiple-choice Questions ·  Explanatory
Notes ·  Review Questions ·  Exercises ·  Answers to Multiple-choice
Questions

Chapter 8  Steam Condensers               386
8.1 Definition 386
8.2  Functions of a Condenser  386

www.pdfgrip.com
A01_THERMAL ENGINEERING_SE_XXXX_A01.indd 14

6/20/2018 9:29:14 AM



Contents
xv

8.3  Elements of Steam Condensing Plant  387
8.4  Types of Steam Condensers  388
8.4.1 Jet Condensers 388
8.4.2 Surface Condensers 390
8.5  Requirements of Modern Surface Condensers  393
8.6  Comparison of Jet and Surface Condensers  393
8.6.1 Jet Condensers 393
8.6.2 Surface Condensers 394
8.7 Vacuum Measurement 394
8.8  Dalton’s Law of Partial Pressures  395
8.9  Mass of Cooling Water Required in a Condenser  396
8.10  Air Removal from the Condenser  397
8.10.1  Sources of Air Infiltration in Condenser  397
8.10.2  Effects of Air Infiltration in Condensers  397
8.11 Air Pump 398
8.11.1  Edward’s Air Pump  398
8.12 Vacuum Efficiency 399
8.13 Condenser Efficiency 399
8.14 Cooling Tower 399
Summary for Quick Revision ·  Multiple-choice Questions ·  Review
Questions ·  Exercises ·  Answers to Multiple-choice Questions

Chapter 9  Gas Power Cycles                
423
 9.1 Introduction 423

 9.2 Piston-cylinder Arrangement 423
 9.3 Carnot Cycle 425
 9.4 Stirling Cycle 426
 9.5 Ericsson Cycle 427
 9.6 Atkinson Cycle 428
  9.7  Otto Cycle (Constant Volume Cycle)  429
 9.8 Diesel Cycle 431
 9.9 Dual Cycle 434
9.10 Brayton Cycle 436
9.11  Comparison Between Otto, Diesel, and Dual Cycles  438
Fill in the Blanks ·  Answers ·  True or False ·  Answers ·  Multiplechoice Questions ·  Review Questions ·  Exercises ·  Answers to
Multiple-choice Questions

Chapter 10  Internal Combustion Engine Systems      485
10.1 Introduction 485
10.2  Classification of Internal Combustion Engines  485
10.3 Construction Features 487

www.pdfgrip.com
A01_THERMAL ENGINEERING_SE_XXXX_A01.indd 15

6/20/2018 9:29:15 AM


xviContents

  10.4  Working of IC Engines  489
10.4.1  Four-stroke Spark-ignition Engine  489
10.4.2  Four-stroke Compression-ignition Engine  490
10.4.3  Two-stroke Spark-ignition Engine  491

10.4.4  Two-stroke Compression-ignition Engine  491
  10.5  Comparison of Four-stroke and Two-stroke Engines  492
  10.6  Comparison of SI and CI Engines  493
  10.7 Merits and Demerits of Two-stroke Engines Over Four-stroke
  
Engines 494
10.7.1 Merits 494
10.7.2 Demerits 494
  10.8  Valve Timing Diagrams  495
10.8.1  Four-stroke SI Engine  495
10.8.2  Four-stroke CI Engine  495
10.8.3  Two-stroke SI Engine  495
10.8.4  Two-stroke CI Engine  497
 10.9 Scavenging Process 498
10.10  Applications of IC Engines  499
10.11  Theoretical and Actual p-v Diagrams  500
10.11.1  Four-stroke Petrol Engine  500
10.11.2  Four-stroke Diesel Engine  501
10.11.3  Two-stroke Petrol Engine  503
10.11.4  Two-stroke Diesel Engine  504
10.12 Carburetion 505
10.12.1 Simple Carburettor 506
10.12.2 Compensating Jet 506
10.12.3  Theory of Simple Carburettor  507
10.12.4  Limitations of Single Jet Carburettor  510
10.12.5 Different Devices Used to Meet the Requirements
  of an Ideal Carburettor  511
10.12.6 Complete Carburettor 511
10.13  Fuel Injection Systems in SI Engines  527
10.13.1 Continuous Port Injection System (Lucas Mechanical

  Petrol Injection System)  527
10.13.2  Electronic Fuel Injection System  528
10.13.3  Rotary Gate Meter Fuel Injection System  530
10.14  Fuel Injection in CI Engines  531
10.14.1  Types of Injection Systems  531
10.14.2  Design of Fuel Nozzle  535
10.15 Fuel Ignition 540
10.15.1  Requirement of Ignition System  540
10.15.2 Ignition Systems 541
10.16  Combustion in IC Engines  552
10.16.1  Stages of Combustion in SI Engines  553

www.pdfgrip.com
A01_THERMAL ENGINEERING_SE_XXXX_A01.indd 16

6/20/2018 9:29:15 AM


Contents

xvii

10.16.2  Ignition Lag (or Delay) in SI Engines  556
10.16.3  Factors Affecting the Flame Propagation  557
10.16.4  Phenomena of Knocking/Detonation in SI Engines  561
10.16.5  Factors Influencing Detonation/Knocking  562
10.16.6  Methods for Suppressing Knocking  564
10.16.7  Effects of Knocking/Detonation  564
10.17  Combustion Chambers for SI Engines  565
10.17.1 Basic Requirements of a Good Combustion

 Chamber 565
10.17.2  Combustion Chamber Design Principles  565
10.17.3  Combustion Chamber Designs  566
10.18  Combustion in CI Engines  567
10.18.1  Stages of Combustion  567
10.18.2  Delay Period or Ignition Delay  568
10.18.3  Variables Affecting Delay Period  569
10.19  Knocking in CI Engines  570
10.19.1  Factors Affecting Knocking in CI Engines  571
10.19.2  Controlling the Knocking  571
10.19.3  Comparison of Knocking in SI and CI Engines  572
10.20  Combustion Chambers for CI Engines  574
10.21 Lubrication Systems 577
10.21.1  Functions of a Lubricating System  577
10.21.2  Desirable Properties of a Lubricating Oil  577
10.21.3  Lubricating Systems Types  577
10.21.4  Lubricating System for IC Engines  579
10.21.5  Lubrication of Different Engine Parts  581
10.22  Necessity of IC Engine Cooling  584
10.22.1  Types of Cooling Systems  584
10.22.2 Precision Cooling 591
10.22.3  Dual Circuit Cooling  591
10.22.4  Disadvantages of Overcooling  591
10.23 Engine Radiators 592
10.23.1 Radiator Matrix 592
10.23.2  Water Requirements of Radiator  593
10.23.3 Fans 594
10.24  Cooling of Exhaust Valve  595
10.25  Governing of IC Engines  596
10.26  Rating of SI Engine Fuels-Octane Number  597

10.26.1 Anti-knock Agents 598
10.26.2 Performance Number 599
10.27  Highest Useful Compression Ratio  599
10.28  Rating of CI Engine Fuels  601
10.29  IC Engine Fuels  601
10.29.1  Fuels for SI Engines  602
10.29.2  Fuels for CI Engines  603

www.pdfgrip.com
A01_THERMAL ENGINEERING_SE_XXXX_A01.indd 17

6/20/2018 9:29:15 AM


xviiiContents

10.30  Alternative Fuels for IC Engines  603
 10.30.1 Alcohols 604
  10.30.2  Use of Hydrogen in CI Engines  604
 10.30.3 Biogas 605
  10.30.4  Producer (or Water) Gas  605
 10.30.5 Biomass-generated Gas 605
  10.30.6  LPG as SI Engine Fuel  605
  10.30.7  Compressed Natural Gas  606
  10.30.8  Coal Gasification and Coal Liquefaction  606
  10.30.9  Non-edible Vegetable Oils  607
10.30.10  Non-edible Wild Oils  607
10.30.11 Ammonia 607
Summary for Quick Revision ·  Multiple-choice Questions ·  Review
Questions ·  Exercises ·  Answers to Multiple-choice Questions


Chapter 11  Performance of Internal Combustion Engines   622
 11.1 Performance Parameters 622
  11.2  Basic Engine Measurements  624
  11.3  Heat Balance Sheet  626
  11.4  Willan’s Line Method  626
 11.5 Morse Test 627
  11.6  Performance of SI Engines  627
11.6.1 Performance of SI Engine at Constant Speed
  and Variable Load  629
  11.7  Performance of CI Engines  630
 11.8 Performance Maps 631
  11.9  Measurement of Air Consumption by Air-box Method  636
11.10  Measurement of Brake Power  638
11.11  Supercharging of IC Engines  658
11.11.1 Thermodynamic Cycle 658
11.11.2  Supercharging of SI Engines  659
11.11.3  Supercharging of CI Engines  660
11.11.4  Effects of Supercharging  660
11.11.5  Objectives of Supercharging  661
11.11.6  Configurations of a Supercharger  661
11.11.7  Supercharging of Single Cylinder Engines  662
11.12  SI Engine Emissions  663
11.12.1 Exhaust Emissions 665
11.12.2 Evaporative Emission 666
11.12.3 Crankcase Emission 666
11.12.4 Lead Emission 666
11.13  Control of Emissions in SI Engine  666
11.14  Crank Case Emission Control  669
11.15  CI Engine Emissions  669


www.pdfgrip.com
A01_THERMAL ENGINEERING_SE_XXXX_A01.indd 18

6/20/2018 9:29:15 AM


Contents

xix

11.15.1  Effect of Engine Type on Diesel Emission  670
11.15.2  Control of Emission from Diesel Engine  673
11.15.3 NOx−Emission Control  674
11.16  Three-Way Catalytic Converter  676
11.16.1  Function of a Catalyst in a Catalytic Converter  676
11.17 Environmental Problems Created by Exhaust Emission
  from IC Engines  677
11.18  Use of Unleaded Petrol  678
11.18.1  Use of Additives  678
Summary for Quick Revision ·  Multiple-choice Questions ·  Explanatory
Notes ·  Review Questions ·  Exercises ·  Answers to Multiple-choice
Questions

Chapter 12  Reciprocating Air Compressors         690
12.1 Introduction 690
12.2  Uses of Compressed Air in Industry  691
12.3 Working Principle of Single-stage Reciprocating
 Compressor 691
12.4 Terminology 691

12.5  Types of Compression  692
12.5.1 Methods for Approximating Compression Process
 to Isothermal 692
12.6 Single-Stage Compression 693
12.6.1 Required Work 693
12.6.2 Volumetric Efficiency 696
12.6.3 Isothermal Efficiency 697
12.6.4 Adiabatic Efficiency 699
12.6.5  Calculation of Main Dimensions  699
12.7 Multi-Stage Compression 699
12.7.1 Two-stage Compressor 700
12.7.2  Heat Rejected to the Intercooler  702
12.7.3 Cylinder Dimensions 703
12.7.4  Intercooler and Aftercooler  703
12.8  Indicated Power of a Compressor  705
12.9 Air Motors 705
12.10 Indicator Diagram 706
12.11 Heat Rejected 707
12.12  Control of Compressor  707
Summary for Quick Revision ·  Multiple-choice Questions ·  Explanatory
Notes ·  Review Questions ·  Exercises ·  Answers to Multiple-choice
Questions

Chapter 13  Rotary Air Compressors            735
13.1 Introduction 735
13.2  Working Principle of Different Rotary Compressors  735

www.pdfgrip.com
A01_THERMAL ENGINEERING_SE_XXXX_A01.indd 19


6/20/2018 9:29:15 AM


xxContents

13.2.1  Roots Blower or Lobe Compressor  735
13.2.2  Vanes Type Blower  737
13.2.3 Lysholm Compressor 737
13.2.4 Screw Compressor 738
13.3  Comparison of Rotary and Reciprocating Compressors  740
Summary for Quick Revision ·  Multiple-choice Questions ·  Review
Questions ·  Exercises ·  Answers to Multiple-choice Questions

Chapter 14  Centrifugal Air Compressors           744
14.1 Introduction 744
14.2 Constructional Features 744
14.3 Working Principle 745
14.4  Variation of Velocity and Pressure  745
14.5  Types of Impellers  745
14.6  Comparison of Centrifugal and Reciprocating Compressors  746
14.7  Comparison of Centrifugal and Rotary Compressors  746
14.8  Static and Stagnation Properties  747
14.9  Adiabatic and Isentropic Processes  748
14.9.1 Isentropic Efficiency 749
14.10 Velocity Diagrams 749
14.10.1  Theory of Operation  750
14.10.2  Width of Blades of Impeller and Diffuser  753
14.11  Slip Factor and Pressure Coefficient  754
14.12 Losses 755
14.13  Effect of Impeller Blade Shape on Performance  755

14.14 Diffuser 756
14.15 Pre-Whirl 757
14.16 Performance Characteristics 757
14.17  Surging and Choking  760
Summary for Quick Revision ·  Multiple-choice Questions ·  Explanatory
Notes ·  Review Questions ·  Exercises ·  Answers to Multiple-choice
Questions

Chapter 15  Axial Flow Air Compressors           789
15.1 Introduction 789
15.2 Constructional Features 789
15.3 Working Principle 790
15.4  Simple Theory of Aerofoil Blading  790
15.5 Velocity Diagrams 792
15.6  Degree of Reaction  794
15.7  Pressure Rise in Isentropic Flow Through a Cascade  794

www.pdfgrip.com
A01_THERMAL ENGINEERING_SE_XXXX_A01.indd 20

6/20/2018 9:29:15 AM


Contents

xxi

15.8 Polytropic Efficiency 795
15.9 Flow Coefficient, Head or Work Coefficient, Deflection Coefficient,
  and Pressure Coefficient  797

15.10  Pressure Rise in a Stage and Number of Stages  798
15.11  Surging, Choking, and Stalling  799
15.12 Performance Characteristics 800
15.13  Comparison of Axial Flow and Centrifugal Compressors  802
15.14  Applications of Axial Flow Compressors  802
15.15  Losses in Axial Flow Compressors  802
Summary for Quick Revision ·  Multiple-choice Questions ·  Explanatory
Notes ·  Review Questions ·  Exercises ·  Answers to Multiple-choice
Questions

Chapter 16  Gas Turbines                   840
16.1 Introduction 840
16.2  Fields of Application of Gas Turbine  840
16.3  Limitations of Gas Turbines  840
16.4  Comparison of Gas Turbines with IC Engines  841
16.4.1 Advantages 841
16.4.2 Disadvantages 841
16.5  Advantages of Gas Turbines Over Steam Turbines  841
16.6  Classification of Gas Turbines  842
16.6.1  Constant Pressure Combustion Gas Turbine  842
16.6.2  Constant Volume Combustion Gas Turbine  843
16.7  Comparison of Open and Closed Cycle Gas Turbines  844
16.8  Position of Gas Turbine in the Power Industry  845
16.9 Thermodynamics of Constant Pressure Gas Turbine: Brayton
 Cycle 845
16.9.1 Efficiency 845
16.9.2 Specific Output 847
16.9.3  Maximum Work Output  848
16.9.4 Work Ratio 849
16.9.5 Optimum Pressure Ratio for Maximum Specific

 Work Output 849
16.10  Cycle Operation with Machine Efficiency  850
16.10.1 Maximum Pressure Ratio for Maximum Specific
 Work 850
16.10.2 Optimum Pressure Ratio for Maximum Cycle
 Thermal Efficiency 851
16.11  Open Cycle Constant Pressure Gas Turbine  853
16.12 Methods for Improvement of Thermal Efficiency
  of Open Cycle Constant Pressure Gas Turbine  854
16.12.1 Regeneration 854

www.pdfgrip.com
A01_THERMAL ENGINEERING_SE_XXXX_A01.indd 21

6/20/2018 9:29:15 AM


xxiiContents

16.12.2 Intercooling 857
16.12.3 Reheating 861
16.12.4  Reheat and Regenerative Cycle  863
16.12.5  Cycle with Intercooling and Regeneration  865
16.12.6  Cycle with Intercooling and Reheating  867
16.12.7 Cycle with Intercooling, Regeneration
 and Reheating 869
16.13  Effects of Operating Variables  890
16.13.1  Effect of Pressure Ratio  891
16.13.2 Effect of Efficiencies of Compressor and Turbine
  on Thermal Efficiency  892

16.14 Multi-Shaft Systems 894
16.15  Multi-Shaft System Turbines in Series  895
16.16  Gas Turbine Fuels  895
16.17 Blade Materials 895
16.17.1 Selection 895
16.17.2  Requirements of Blade Material  896
16.18  Cooling of Blades  896
16.18.1  Advantages of Cooling  896
16.18.2  Different Methods of Blade Cooling  896
Summary for Quick Revision ·  Multiple-choice Questions ·  Explanatory
Notes ·  Review Questions ·  Exercises ·  Answers to Multiple-choice
Questions

Chapter 17  Jet Propulsion                  922
17.1  Principle of Jet Propulsion  922
17.2  Jet Propulsion Systems  922
17.2.1 Screw Propeller 922
17.2.2 Ramjet Engine 923
17.2.3  Pulse Jet Engine  924
17.2.4 Turbo-jet Engine 925
17.2.5 Turbo-Prop Engine 926
17.2.6 Rocket Propulsion 927
17.3  Jet Propulsion v’s Rocket Propulsion  927
17.4  Basic Cycle for Turbo-jet Engine  928
17.4.1 Thrust 930
17.4.2 Thrust Power 930
17.4.3 Propulsive Power 931
17.4.4 Propulsive Efficiency 931
17.4.5 Thermal Efficiency 931
17.4.6 Overall Efficiency 931

17.4.7 Jet Efficiency 932
17.4.8  Ram Air Efficiency  932

www.pdfgrip.com
A01_THERMAL ENGINEERING_SE_XXXX_A01.indd 22

6/20/2018 9:29:15 AM


Contents

xxiii

17.5 Thrust Work, Propulsive Work, and Propulsive Efficiency
  for Rocket Engine  932
Summary for Quick Revision ·  Multiple-choice Questions ·  Explanatory
Notes ·  Review Questions ·  Exercises ·  Answers to Multiple-choice
Questions

Chapter 18  Introduction to Refrigeration           961
18.1 Introduction 961
18.2 Refrigeration Systems 961
18.3  Methods of Refrigeration  962
18.3.1  Vapour Compression Refrigeration System  962
18.3.2  Vapour Absorption System  963
18.3.3 Ejector-Compression System 963
18.3.4 Electro-Lux Refrigeration 964
18.3.5 Solar Refrigeration 964
18.3.6 Thermo-electric Refrigeration 964
18.3.7  Vortex Tube Refrigeration  965

18.4  Unit of Refrigeration  965
18.5 Refrigeration Effect 965
18.6  Carnot Refrigeration Cycle  966
18.7 Difference Between a Heat Engine, Refrigerator
  and Heat Pump  967
18.8  Power Consumption of a Refrigerating Machine  969
18.9  Air Refrigeration Cycles  970
18.9.1  Open Air Refrigeration Cycle  971
18.9.2  Closed (or dense) Air Refrigeration Cycle  971
18.10  Reversed Carnot Cycle  971
18.10.1 Temperature Limitations for Reversed
 Carnot Cycle 972
18.10.2  Vapour as a Refrigerant in Reversed Carnot Cycle  973
18.10.3  Gas as a Refrigerant in Reversed Carnot Cycle  975
18.10.4  Limitations of Reversed Carnot Cycle  977
18.11  Bell-Coleman Cycle (or Reversed Brayton or Joule Cycle)  977
18.11.1  Bell-Coleman Cycle with Polytropic Processes  979
18.12 Refrigerants 988
18.13  Classification of Refrigerants  988
18.14  Designation of Refrigerants  989
18.15  Desirable Properties of Refrigerants  989
18.16  Applications of Refrigerants  990
18.17 Eco-friendly Refrigerants 993
18.18 Refrigerant Selection 995
Multiple-choice Questions ·  Review Questions ·  Exercises ·  Answers
to Multiple-choice Questions

www.pdfgrip.com
A01_THERMAL ENGINEERING_SE_XXXX_A01.indd 23


6/20/2018 9:29:15 AM


xxivContents

Chapter 19  V
 apour Compression and Vapour Absorption
Systems                      999
19.1 Introduction 999
19.2 Comparison of Vapour Compression System
  with Air Refrigeration System  999
19.3  Simple Vapour Compression Refrigeration System  1000
19.4  Vapour Compression Refrigeration System  1001
19.5  Use of T-s and p-h Charts  1004
19.6  Effect of Suction Pressure  1014
19.7  Effect of Discharge Pressure  1015
19.8  Effect of Superheating of Refrigerant Vapour  1016
19.8.1 Superheat Horn 1017
19.9 Effect of Subcooling (or Undercooling) of
 Refrigerant Vapour 1017
19.10  Vapour Absorption System  1020
19.11 Working Principle of Vapour Absorption Refrigeration
 System 1021
19.11.1 Working 1022
19.12 Advantages of Vapour Absorption System Over Vapour
  Compression System  1022
19.13 Coefficient of Performance of an Ideal Vapour Absorption
 System 1023
19.14 Ammonia-Water (or Practical) Vapour Absorption System
 (NH3 – H2O) 1025

19.15 Lithium Bromide-Water Vapour Absorption System  
 (LiBr-H2O) 1026
19.15.1 Working Principle 1027
19.15.2  Lithium Bromide-Water System Equipment  1028
19.16 Comparison of Ammonia-Water and Lithium Bromide-Water
 Absorption Systems 1029
Exercises

Chapter 20  Air-Conditioning and Psychrometrics       
1034
20.1 Introduction 1034
20.2  Principles of Psychrometry  1034
20.3 Psychrometric Relations 1036
20.4  Enthalpy of Moist Air  1038
20.5  Humid Specific Heat  1039
20.6 Thermodynamic Wet Bulb Temperature or Adiabatic
  Saturation Temperature (Ast) 1043

www.pdfgrip.com
A01_THERMAL ENGINEERING_SE_XXXX_A01.indd 24

6/20/2018 9:29:15 AM


×