Tải bản đầy đủ (.pdf) (397 trang)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (3.17 MB, 397 trang )

2'3#513*'13:
 &7#0%'4#0&
22.+%#5+104
£È™
1.




&+513+#.(<%'

%*11.1(#5*'/#5+%#.
%+'0%'4
'. 7+70+7'34+5:
#/#5 7+743#'.
&+513+#.
1#3&

 .2#:
''3*'7#
 3#;:#+(#
 5;/10'. 7+7
 
#..
.#%-4$63)

'0 35;+'. 7+7

'3%17+%+
.11/+0)510



>55%*'3
*'/0+5;

.#0%': 5*'04 
 
1$630
6((#.1

635118#
+5:
#7+&410 #5'3.1105#3+1
16).#4
1..')'5#5+10
+,-4/#310+0)'0
:/'*1715
 6*3/#00
''3*'7#

3#/4%*#+0;
 '.510#1..#
 ##4*1'- /45'3&#/
#2'3 3)100'

631&#1-:1
#0%#45'3
#.)#3:
'3'3#+(#

+5:#)+0
1.6/$64

.4*'74-:51334
65+0#3#05#
#3$#3#
1&/#0 +..+#/4$63)
170:#-
*#3.155'47+..'
#3#410
'3-'.':
2+5-174-: +..+#/4$63)
3'+.317+&'0%'
2/'+'3#3$63)
'3&6:060'.'+&'0
1+%6.'4%6
'3-'.':
!+##4*7+..'
"#(#'7'00'4
1013#3:#0& &7+413:
&+513+#.
1#3&

1+#4
.11/+0)510
#./14#05#
.#3#
#+.#5*5#0(13&
#0)'3+'00#
#9'8"13-
+74+%
''3*'7#
 +&1/#05#

36;


www.pdfgrip.com

/FX5SFOETJOUIF
5IFPSZPG)ZQFSCPMJD
&RVBUJPOT

.JDIBFM3FJTTJH
#FSU8PMGHBOH4DIVM[F
&EJUPST

"EWBODFTJO
1BSUJBM
%JGGFSFOUJBM
&RVBUJPOT

#JSLIÊVTFS7FSMBH
#BTFM #PTUPO#FSMJO


www.pdfgrip.com
(GLWRUV
0DWWKLDV/DQJHU
'HSDUWPHQWRI0DWKHPDWLFV
8QLYHUVLW\RI6WUDWKFO\GH
5LFKPRQG6WUHHW
*ODVJRZ*;+
8.

HPDLOPO#PDWKVVWUDWKDFXN

$QQHPDULH/XJHU
+DUDOG:RUDFHN
,QVWLWXWIU$QDO\VLVXQG6FLHQWLÀF&RPSXWLQJ
7HFKQLVFKH8QLYHUVLWlW:LHQ
:LHGQHU+DXSWVWUDVVH²
:LHQ
$XVWULD
HPDLODOXJHU#PDLO]VHUYWXZLHQDFDW
 KDUDOGZRUDFHN#WXZLHQDFDW

0DWKHPDWLFV6XEMHFW&ODVVLÀFDWLRQ3ULPDU\&%6HFRQGDU\/$$

$&,3FDWDORJXHUHFRUGIRUWKLVERRNLVDYDLODEOHIURPWKH
/LEUDU\RI&RQJUHVV:DVKLQJWRQ'&86$
%LEOLRJUDSKLFLQIRUPDWLRQSXEOLVKHGE\'LH'HXWVFKH%LEOLRWKHN
'LH'HXWVFKH%LEOLRWKHNOLVWVWKLVSXEOLFDWLRQLQWKH'HXWVFKH1DWLRQDOELEOLRJUDÀHGHWDLOHGELEOLRJUDSKLFGDWDLVDYDLODEOHLQ
WKH,QWHUQHWDWKWWSGQEGGEGH!

,6%1%LUNKlXVHU9HUODJ%DVHO²%RVWRQ²%HUOLQ
7KLVZRUNLVVXEMHFWWRFRS\ULJKW$OOULJKWVDUHUHVHUYHGZKHWKHUWKHZKROHRUSDUWRIWKHPDWHULDOLVFRQFHUQHGVSHFLÀFDOO\
WKHULJKWVRIWUDQVODWLRQUHSULQWLQJUHXVHRILOOXVWUDWLRQVUHFLWDWLRQEURDGFDVWLQJUHSURGXFWLRQRQPLFURÀOPVRULQRWKHU
ZD\VDQGVWRUDJHLQGDWDEDQNV)RUDQ\NLQGRIXVHSHUPLVVLRQRIWKHFRS\ULJKWRZQHUPXVWEHREWDLQHG
‹%LUNKlXVHU9HUODJ32%R[&+%DVHO6ZLW]HUODQG
 










3ULQWHGRQDFLGIUHHSDSHUSURGXFHGIURPFKORULQHIUHHSXOS7&)'
&RYHUGHVLJQ+HLQ]+LOWEUXQQHU%DVHO
3ULQWHGLQ*HUPDQ\
,6%1  H,6%1
,6%1
 ZZZELUNKDXVHUFK


www.pdfgrip.com

Contents

Preface
1 Axiomatics for Functional Calculi
1.1 The Concept of Functional Calculus . . . .
1.2 An Abstract Framework . . . . . . . . . . .
1.2.1 The Extension Procedure . . . . . .
1.2.2 Properties of the Extended Calculus
1.2.3 Generators and Morphisms . . . . .
1.3 Meromorphic Functional Calculi . . . . . .
1.3.1 Rational Functions . . . . . . . . . .
1.3.2 An Abstract Composition Rule . . .
1.4 Multiplication Operators . . . . . . . . . . .
1.5 Concluding Remarks . . . . . . . . . . . . .
1.6 Comments . . . . . . . . . . . . . . . . . . .


xi

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.
.
.
.

1
1
3
4
5
7
9
10
12
13
15
16

2 The Functional Calculus for Sectorial Operators
2.1 Sectorial Operators . . . . . . . . . . . . . . . . . . . . . .

2.1.1 Examples . . . . . . . . . . . . . . . . . . . . . . .
2.1.2 Sectorial Approximation . . . . . . . . . . . . . . .
2.2 Spaces of Holomorphic Functions . . . . . . . . . . . . . .
2.3 The Natural Functional Calculus . . . . . . . . . . . . . .
2.3.1 Primary Functional Calculus via Cauchy Integrals
2.3.2 The Natural Functional Calculus . . . . . . . . . .
2.3.3 Functions of Polynomial Growth . . . . . . . . . .
2.3.4 Injective Operators . . . . . . . . . . . . . . . . . .
2.4 The Composition Rule . . . . . . . . . . . . . . . . . . . .
2.5 Extensions According to Spectral Conditions . . . . . . .
2.5.1 Invertible Operators . . . . . . . . . . . . . . . . .
2.5.2 Bounded Operators . . . . . . . . . . . . . . . . .
2.5.3 Bounded and Invertible Operators . . . . . . . . .
2.6 Miscellanies . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6.1 Adjoints . . . . . . . . . . . . . . . . . . . . . . . .
2.6.2 Restrictions . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

19
19
24
25
26
30
30
34
37
39
41
45
45

46
47
48
48
50

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.


.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.



www.pdfgrip.com

vi

Contents
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.

.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.

.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.


50
52
53
53
55
57

3 Fractional Powers and Semigroups
3.1 Fractional Powers with Positive Real Part . . .
3.2 Fractional Powers with Arbitrary Real Part . .
3.3 The Phillips Calculus for Semigroup Generators
3.4 Holomorphic Semigroups . . . . . . . . . . . . .
3.5 The Logarithm and the Imaginary Powers . . .
3.6 Comments . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.

.
.
.
.
.
.

.

.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.

.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.

.

61
61
70
73
76
81
88

4 Strip-type Operators and the Logarithm
4.1 Strip-type Operators . . . . . . . . . . . . . . . .
4.2 The Natural Functional Calculus . . . . . . . . .
4.3 The Spectral Height of the Logarithm . . . . . .
4.4 Monniaux’s Theorem and the Inversion Problem
4.5 A Counterexample . . . . . . . . . . . . . . . . .
4.6 Comments . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.

.
.
.
.
.

.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.


.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

91
. 91
. 93
. 98
. 100
. 101
. 104

5 The Boundedness of the H ∞ -calculus

5.1 Convergence Lemma . . . . . . . . . . . . . . . . . . .
5.1.1 Convergence Lemma for Sectorial Operators. .
5.1.2 Convergence Lemma for Strip-type Operators.
5.2 A Fundamental Approximation Technique . . . . . . .
5.3 Equivalent Descriptions and Uniqueness . . . . . . . .
5.3.1 Subspaces . . . . . . . . . . . . . . . . . . . . .
5.3.2 Adjoints . . . . . . . . . . . . . . . . . . . . . .
5.3.3 Logarithms . . . . . . . . . . . . . . . . . . . .
5.3.4 Boundedness on Subalgebras of H ∞ . . . . . .
5.3.5 Uniqueness . . . . . . . . . . . . . . . . . . . .
5.4 The Minimal Angle . . . . . . . . . . . . . . . . . . . .
5.5 Perturbation Results . . . . . . . . . . . . . . . . . . .
5.5.1 Resolvent Growth Conditions . . . . . . . . . .
5.5.2 A Theorem of Pră
uss and Sohr . . . . . . . . . .
5.6 A Characterisation . . . . . . . . . . . . . . . . . . . .
5.7 Comments . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.


.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

2.7

2.8

2.6.3 Sectorial Approximation . . . . .
2.6.4 Boundedness . . . . . . . . . . .
The Spectral Mapping Theorem . . . . .
2.7.1 The Spectral Inclusion Theorem
2.7.2 The Spectral Mapping Theorem
Comments . . . . . . . . . . . . . . . . .

.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

105
105
105
107
108
111
112
113
113
114
116

117
119
119
125
127
127


Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×