2'3#513*'13:
&7#0%'4#0&
22.+%#5+104
£È
1.
&+513+#.(<%'
%*11.1(#5*'/#5+%#.
%+'0%'4
'.7+70+7'34+5:
#/#57+743#'.
&+513+#.
1#3&
.2#:
''3*'7#
3#;:#+(#
5;/10'.7+7
#..
.#%-4$63)
'035;+'.7+7
'3%17+%+
.11/+0)510
>55%*'3
*'/0+5;
.#0%':5*'04
1$630
6((#.1
635118#
+5:
#7+&410 #5'3.1105#3+1
16).#4
1..')'5#5+10
+,-4/#310+0)'0
:/'*1715
6*3/#00
''3*'7#
3#/4%*#+0;
'.510#1..#
##4*1'-/45'3/
#2'33)100'
6311-:1
#0%#45'3
#.)#3:
'3'3#+(#
+5:#)+0
1.6/$64
.4*'74-:51334
65+0#3#05#
#3$#3#
1&/#0 +..+#/4$63)
170:#-
*#3.155'47+..'
#3#410
'3-'.':
2+5-174-: +..+#/4$63)
3'+.317+&'0%'
2/'+'3#3$63)
'3&6:060'.'+&'0
1+%6.'4%6
'3-'.':
!+##4*7+..'
"#(#'7'00'4
1013#3:#0&&7+413:
&+513+#.
1#3&
1+#4
.11/+0)510
#./14#05#
.#3#
#+.#5*5#0(13&
#0)'3+'00#
#9'8"13-
+74+%
''3*'7#
+&1/#05#
36;
www.pdfgrip.com
/FX5SFOETJOUIF
5IFPSZPG)ZQFSCPMJD
&RVBUJPOT
.JDIBFM3FJTTJH
#FSU8PMGHBOH4DIVM[F
&EJUPST
"EWBODFTJO
1BSUJBM
%JGGFSFOUJBM
&RVBUJPOT
#JSLIÊVTFS7FSMBH
#BTFM #PTUPO#FSMJO
www.pdfgrip.com
(GLWRUV
0DWWKLDV/DQJHU
'HSDUWPHQWRI0DWKHPDWLFV
8QLYHUVLW\RI6WUDWKFO\GH
5LFKPRQG6WUHHW
*ODVJRZ*;+
8.
HPDLOPO#PDWKVVWUDWKDFXN
$QQHPDULH/XJHU
+DUDOG:RUDFHN
,QVWLWXWIU$QDO\VLVXQG6FLHQWLÀF&RPSXWLQJ
7HFKQLVFKH8QLYHUVLWlW:LHQ
:LHGQHU+DXSWVWUDVVH²
:LHQ
$XVWULD
HPDLODOXJHU#PDLO]VHUYWXZLHQDFDW
KDUDOGZRUDFHN#WXZLHQDFDW
0DWKHPDWLFV6XEMHFW&ODVVLÀFDWLRQ3ULPDU\&%6HFRQGDU\/$$
$&,3FDWDORJXHUHFRUGIRUWKLVERRNLVDYDLODEOHIURPWKH
/LEUDU\RI&RQJUHVV:DVKLQJWRQ'&86$
%LEOLRJUDSKLFLQIRUPDWLRQSXEOLVKHGE\'LH'HXWVFKH%LEOLRWKHN
'LH'HXWVFKH%LEOLRWKHNOLVWVWKLVSXEOLFDWLRQLQWKH'HXWVFKH1DWLRQDOELEOLRJUDÀHGHWDLOHGELEOLRJUDSKLFGDWDLVDYDLODEOHLQ
WKH,QWHUQHWDWKWWSGQEGGEGH!
,6%1%LUNKlXVHU9HUODJ%DVHO²%RVWRQ²%HUOLQ
7KLVZRUNLVVXEMHFWWRFRS\ULJKW$OOULJKWVDUHUHVHUYHGZKHWKHUWKHZKROHRUSDUWRIWKHPDWHULDOLVFRQFHUQHGVSHFLÀFDOO\
WKHULJKWVRIWUDQVODWLRQUHSULQWLQJUHXVHRILOOXVWUDWLRQVUHFLWDWLRQEURDGFDVWLQJUHSURGXFWLRQRQPLFURÀOPVRULQRWKHU
ZD\VDQGVWRUDJHLQGDWDEDQNV)RUDQ\NLQGRIXVHSHUPLVVLRQRIWKHFRS\ULJKWRZQHUPXVWEHREWDLQHG
%LUNKlXVHU9HUODJ32%R[&+%DVHO6ZLW]HUODQG
3ULQWHGRQDFLGIUHHSDSHUSURGXFHGIURPFKORULQHIUHHSXOS7&)'
&RYHUGHVLJQ+HLQ]+LOWEUXQQHU%DVHO
3ULQWHGLQ*HUPDQ\
,6%1 H,6%1
,6%1
ZZZELUNKDXVHUFK
www.pdfgrip.com
Contents
Preface
1 Axiomatics for Functional Calculi
1.1 The Concept of Functional Calculus . . . .
1.2 An Abstract Framework . . . . . . . . . . .
1.2.1 The Extension Procedure . . . . . .
1.2.2 Properties of the Extended Calculus
1.2.3 Generators and Morphisms . . . . .
1.3 Meromorphic Functional Calculi . . . . . .
1.3.1 Rational Functions . . . . . . . . . .
1.3.2 An Abstract Composition Rule . . .
1.4 Multiplication Operators . . . . . . . . . . .
1.5 Concluding Remarks . . . . . . . . . . . . .
1.6 Comments . . . . . . . . . . . . . . . . . . .
xi
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
3
4
5
7
9
10
12
13
15
16
2 The Functional Calculus for Sectorial Operators
2.1 Sectorial Operators . . . . . . . . . . . . . . . . . . . . . .
2.1.1 Examples . . . . . . . . . . . . . . . . . . . . . . .
2.1.2 Sectorial Approximation . . . . . . . . . . . . . . .
2.2 Spaces of Holomorphic Functions . . . . . . . . . . . . . .
2.3 The Natural Functional Calculus . . . . . . . . . . . . . .
2.3.1 Primary Functional Calculus via Cauchy Integrals
2.3.2 The Natural Functional Calculus . . . . . . . . . .
2.3.3 Functions of Polynomial Growth . . . . . . . . . .
2.3.4 Injective Operators . . . . . . . . . . . . . . . . . .
2.4 The Composition Rule . . . . . . . . . . . . . . . . . . . .
2.5 Extensions According to Spectral Conditions . . . . . . .
2.5.1 Invertible Operators . . . . . . . . . . . . . . . . .
2.5.2 Bounded Operators . . . . . . . . . . . . . . . . .
2.5.3 Bounded and Invertible Operators . . . . . . . . .
2.6 Miscellanies . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6.1 Adjoints . . . . . . . . . . . . . . . . . . . . . . . .
2.6.2 Restrictions . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
19
19
24
25
26
30
30
34
37
39
41
45
45
46
47
48
48
50
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
www.pdfgrip.com
vi
Contents
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
50
52
53
53
55
57
3 Fractional Powers and Semigroups
3.1 Fractional Powers with Positive Real Part . . .
3.2 Fractional Powers with Arbitrary Real Part . .
3.3 The Phillips Calculus for Semigroup Generators
3.4 Holomorphic Semigroups . . . . . . . . . . . . .
3.5 The Logarithm and the Imaginary Powers . . .
3.6 Comments . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
61
61
70
73
76
81
88
4 Strip-type Operators and the Logarithm
4.1 Strip-type Operators . . . . . . . . . . . . . . . .
4.2 The Natural Functional Calculus . . . . . . . . .
4.3 The Spectral Height of the Logarithm . . . . . .
4.4 Monniaux’s Theorem and the Inversion Problem
4.5 A Counterexample . . . . . . . . . . . . . . . . .
4.6 Comments . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
91
. 91
. 93
. 98
. 100
. 101
. 104
5 The Boundedness of the H ∞ -calculus
5.1 Convergence Lemma . . . . . . . . . . . . . . . . . . .
5.1.1 Convergence Lemma for Sectorial Operators. .
5.1.2 Convergence Lemma for Strip-type Operators.
5.2 A Fundamental Approximation Technique . . . . . . .
5.3 Equivalent Descriptions and Uniqueness . . . . . . . .
5.3.1 Subspaces . . . . . . . . . . . . . . . . . . . . .
5.3.2 Adjoints . . . . . . . . . . . . . . . . . . . . . .
5.3.3 Logarithms . . . . . . . . . . . . . . . . . . . .
5.3.4 Boundedness on Subalgebras of H ∞ . . . . . .
5.3.5 Uniqueness . . . . . . . . . . . . . . . . . . . .
5.4 The Minimal Angle . . . . . . . . . . . . . . . . . . . .
5.5 Perturbation Results . . . . . . . . . . . . . . . . . . .
5.5.1 Resolvent Growth Conditions . . . . . . . . . .
5.5.2 A Theorem of Pră
uss and Sohr . . . . . . . . . .
5.6 A Characterisation . . . . . . . . . . . . . . . . . . . .
5.7 Comments . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2.7
2.8
2.6.3 Sectorial Approximation . . . . .
2.6.4 Boundedness . . . . . . . . . . .
The Spectral Mapping Theorem . . . . .
2.7.1 The Spectral Inclusion Theorem
2.7.2 The Spectral Mapping Theorem
Comments . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
105
105
105
107
108
111
112
113
113
114
116
117
119
119
125
127
127