Franz W. Peren
Math for Business
and Economics
Compendium of Essential Formulas
Math for Business and Economics
www.pdfgrip.com
Franz W. Peren
Math for Business
and Economics
Compendium of Essential Formulas
www.pdfgrip.com
Franz W. Peren
Bonn-Rhein-Sieg University
Sankt Augustin, Germany
ISBN 978-3-662-63248-2
ISBN 978-3-662-63249-9 (eBook)
/>© Springer-Verlag GmbH Germany, part of Springer Nature 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such nam es are
exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in
this book are believed to be true and accurate at the date of publication. Neither the publisher nor
the authors or the editors give a warranty, expressed or implied, with respect to the material
contained herein or for any errors or omissions that may have been made. The publisher remains
neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This Springer imprint is published by the registered company Springer-Verlag GmbH, DE part
of Springer Nature.
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany
www.pdfgrip.com
For my father, Paul.
www.pdfgrip.com
Preface
The following book is based on the author’s expertise in the field of business mathematics. After completing his studies in business administration and mathematics, he started his career working for a global bank
and the German government. Later he became a professor of business
administration, specializing in quantitative methods. He has been a professor at the Bonn-Rhein-Sieg University in Sankt Augustin, Germany
since 1995, where he is mainly teaching business mathematics, business statistics, and operations research. He has also previously taught
and conducted research at the University of Victoria in Victoria, BC,
Canada and at Columbia University in New York City, New York, USA.
To the author’s best knowledge and beliefs, this formulary presents its
mathematical contents in a practical manner, as they are needed for
meaningful and relevant application in global business, as well as in
universities and economic practice.
The author would like to thank his academic colleagues who have contributed to this work and to many other projects with creativity, knowledge and dedication for more than 25 years. In particular, he would
like to thank Ms. Eva Siebertz and Mr. Nawid Schahab, who were instrumental in managing and creating this formulary. Special thanks are
given to Ms. Camilla Demuth, Ms. Linh Hoang, and Ms. Michelle Jarsen.
Should any mistakes remain, such errors shall be exclusively at the
expense of the author. The author is thankful in advance to all users of
this formulary for any constructive comments or suggestions.
Bonn, March 2021
Franz W. Peren
VII
www.pdfgrip.com
Contents
List of Abbreviations
1
XXI
Mathematical Signs and Symbols
1
1.1
Pragmatic Signs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
1.2
General Arithmetic Relations and Links . . . . . . . . . . . .
1
1.3
Sets of Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2
1.4
Special Numbers and Links . . . . . . . . . . . . . . . . . . . . . .
3
1.5
Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
1.6
Exponential Functions, Logarithm . . . . . . . . . . . . . . . .
4
1.7
Trigonometric Functions, Hyperbolic Functions . . . . .
4
1.8
Vectors, Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
1.9
Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
1.10
Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7
1.11
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7
1.12
Order Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7
1.13
SI Multiplying and Dividing Prefixes . . . . . . . . . . . . . . .
8
1.14
Greek Alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
IX
www.pdfgrip.com
X
2
3
Contents
Logic
11
2.1
Mathematical Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11
2.2
Propositional Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1
Propositional Variable . . . . . . . . . . . . . . . . . . .
2.2.2
Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . .
11
11
12
Arithmetic
15
3.1
Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.1
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.2
Set Relations . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.3
Set Operations . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.4
Relations, Laws, Rules of Calculation for Sets
3.1.5
Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.6
Numeral Systems . . . . . . . . . . . . . . . . . . . . . . .
3.1.6.1 Decimal System (Decadic System)
3.1.6.2 Dual System (Binary System) . . . .
3.1.6.3 Roman Numeral System . . . . . . . . .
15
15
16
17
19
21
22
23
23
24
3.2
Elementary Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.1
Elementary Foundations . . . . . . . . . . . . . . . .
3.2.1.1 Axioms . . . . . . . . . . . . . . . . . . . . . . .
3.2.1.2 Factorisation . . . . . . . . . . . . . . . . . . .
3.2.1.3 Relations . . . . . . . . . . . . . . . . . . . . . .
3.2.1.4 Absolute Value, Signum . . . . . . . . .
3.2.1.5 Fractions . . . . . . . . . . . . . . . . . . . . . .
3.2.1.6 Polynomial Division . . . . . . . . . . . . .
3.2.2
Conversions of Terms . . . . . . . . . . . . . . . . . . .
3.2.2.1 Binomial Formulas . . . . . . . . . . . . . .
3.2.2.2 Binomial Theorem . . . . . . . . . . . . . .
3.2.2.3 General Binomial Theorem for Natural Exponents . . . . . . . . . . . . . . . . .
3.2.2.4 General Binomial Theorem for Real
Exponents . . . . . . . . . . . . . . . . . . . . .
3.2.2.5 Polynomial Terms . . . . . . . . . . . . . . .
3.2.3
Summation and Product Notation . . . . . . . . .
3.2.3.1 Summation Notation . . . . . . . . . . . .
3.2.3.2 Product Notation . . . . . . . . . . . . . . .
24
24
25
25
26
26
27
27
29
29
29
www.pdfgrip.com
30
30
30
30
31
32
Contents
XI
3.2.4
3.2.5
3.2.6
3.2.7
4
Powers, Roots . . . . . . . . . . . . . . . . . . . . . . . . . .
Logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Factorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Binomial Coefficient . . . . . . . . . . . . . . . . . . . . .
33
36
38
39
3.3
Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.1
Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.2
Limit of a Sequence . . . . . . . . . . . . . . . . . . . .
3.3.3
Arithmetic and Geometric Sequences . . . . .
41
41
44
46
3.4
Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4.1
Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4.2
Arithmetic and Geometric Series . . . . . . . . . .
46
46
47
Algebra
51
4.1
Fundamental Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
51
4.2
Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.1
Linear Equations with One Variable . . . . . . .
4.2.2
Linear Inequalities with One Variable . . . . . .
4.2.3
Linear Equations with Multiple Variables . . .
4.2.4
Systems of Linear Equations . . . . . . . . . . . . .
4.2.5
Linear Inequalities with Multiple Variables . .
53
53
56
56
57
61
4.3
Non-linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.1
Quadratic Equations with One Variable . . . .
4.3.2
Cubic Equations with One Variable . . . . . . .
4.3.3
Biquadratic Equations . . . . . . . . . . . . . . . . . . .
4.3.4
Equations of the nth Degree . . . . . . . . . . . . . .
4.3.5
Radical Equations . . . . . . . . . . . . . . . . . . . . . .
62
62
65
67
68
69
4.4
Transcendental Equations . . . . . . . . . . . . . . . . . . . . . . .
4.4.1
Exponential Equations . . . . . . . . . . . . . . . . . .
4.4.2
Logarithmic Equations . . . . . . . . . . . . . . . . . .
71
71
73
4.5
Approximation Methods . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.1
Regula falsi (Secant Method) . . . . . . . . . . . .
4.5.2
Newton’s Method (Tangent Method) . . . . . . .
75
75
77
www.pdfgrip.com
XII
Contents
4.5.3
5
General Approximation Method (Fixed-point
Iteration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
80
Linear Algebra
87
5.1
Fundamental Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.1
Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.2
Equality/Inequality of Matrices . . . . . . . . . . .
5.1.3
Transposed Matrix . . . . . . . . . . . . . . . . . . . . . .
5.1.4
Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.5
Special Matrices and Vectors . . . . . . . . . . . .
87
87
88
89
89
92
5.2
Operations with Matrices . . . . . . . . . . . . . . . . . . . . . . . .
5.2.1
Addition of Matrices . . . . . . . . . . . . . . . . . . . . .
5.2.2
Multiplication of Matrices . . . . . . . . . . . . . . . . .
5.2.2.1 Multiplication of a Matrix with a
Scalar . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.2.2 The Scalar Product of Two Vectors . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.2.3 Multiplication of a Matrix by a Column Vector . . . . . . . . . . . . . . . . . . . .
5.2.2.4 Multiplication of a Row Vector by
a Matrix . . . . . . . . . . . . . . . . . . . . . . .
5.2.2.5 Multiplication of Two Matrices . . . .
94
94
96
5.3
96
98
100
102
103
The Inverse of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.2
Determination of the Inverse with the Usage
of the Gaussian Elimination Method . . . . . .
107
107
5.4
The Rank of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.1
Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.2
Determination of the Rank of a Matrix . . . . .
113
113
113
5.5
The Determinant of a Matrix . . . . . . . . . . . . . . . . . . . . .
5.5.1
Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5.2
Calculation of Determinants . . . . . . . . . . . . . .
5.5.3
Characteristics of Determinants . . . . . . . . . . .
117
117
118
124
www.pdfgrip.com
109
Contents
5.6
6
7
XIII
The Adjoint of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.1
Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.2
Determination of the Inverse with the Usage
of the Adjoint . . . . . . . . . . . . . . . . . . . . . . . . . . .
125
125
127
Combinatorics
129
6.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
129
6.2
Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
133
6.3
Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
135
6.4
Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
136
Financial Mathematics
141
7.1
Calculation of Interest . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1.1
Fundamental Terms . . . . . . . . . . . . . . . . . . . . .
7.1.2
Annual Interest . . . . . . . . . . . . . . . . . . . . . . . . .
7.1.2.1 Simple Interest Calculation . . . . . . .
7.1.2.2 Compound Computation of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1.2.3 Composite Interest . . . . . . . . . . . . .
7.1.3
Interest During the Period . . . . . . . . . . . . . . .
7.1.3.1 Simple Interest Calculation (linear)
7.1.3.2 Simple Interest Using the Nominal Annual Interest Rate . . . . . . . . .
7.1.3.3 Compound Interest (exponential) .
7.1.3.4 Interest with Compound Interest
Using a Conforming Annual Interest Rate . . . . . . . . . . . . . . . . . . . . . .
7.1.3.5 Mixed Interest . . . . . . . . . . . . . . . . .
7.1.3.6 Steady Interest Rate . . . . . . . . . . . .
141
141
142
142
7.2
Annual Percentage Rate . . . . . . . . . . . . . . . . . . . . . . . .
164
7.3
Depreciation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3.1
Time Depreciation . . . . . . . . . . . . . . . . . . . . . .
7.3.1.1 Linear Depreciation . . . . . . . . . . . . .
169
169
169
www.pdfgrip.com
144
146
155
155
156
157
157
159
160
XIV
Contents
7.3.1.2
7.3.1.3
7.3.2
7.3.3
7.4
7.5
7.6
Arithmetic-Degressive Depreciation
Geometric-Degressive Depreciation . . . . . . . . . . . . . . . . . . . . . . . . . . .
Units of Production Depreciation . . . . . . . . .
Extraordinary Depreciation . . . . . . . . . . . . . .
Annuity Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.4.1
Fundamental Terms . . . . . . . . . . . . . . . . . . . . .
7.4.2
Finite, Regular Annuity . . . . . . . . . . . . . . . . . .
7.4.2.1 Annual Annuity with Annual Interest
7.4.2.2 Annual Annuity with Sub-Annual
Interest . . . . . . . . . . . . . . . . . . . . . . .
7.4.2.3 Sub-Annual Annuity with Annual
Interest . . . . . . . . . . . . . . . . . . . . . . .
7.4.2.4 Sub-Annual Annuity with Sub-Annual
Interest . . . . . . . . . . . . . . . . . . . . . . .
7.4.3
Finite, Variable Annuity . . . . . . . . . . . . . . . . . .
7.4.3.1 Irregular Annuity . . . . . . . . . . . . . . .
7.4.3.2 Arithmetic Progressive Annuity . . .
7.4.3.3 Geometric Progressive Annuity . . .
7.4.4
Perpetuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sinking Fund Calculation . . . . . . . . . . . . . . . . . . . . . . . .
7.5.1
Fundamental Terms . . . . . . . . . . . . . . . . . . . . .
7.5.2
Annuity Repayment . . . . . . . . . . . . . . . . . . . . .
7.5.3
Repayment by Instalments . . . . . . . . . . . . . .
7.5.4
Repayment with Premium . . . . . . . . . . . . . . .
7.5.4.1 Annuity Repayment with Premium
7.5.4.2 Repayment of an Instalment Debt
with Premium . . . . . . . . . . . . . . . . . .
7.5.5
Grace Periods . . . . . . . . . . . . . . . . . . . . . . . . .
7.5.6
Rounded Annuities . . . . . . . . . . . . . . . . . . . . .
7.5.6.1 Percentage Annuity . . . . . . . . . . . . .
7.5.6.2 Repayment of Bonds . . . . . . . . . . .
7.5.7
Repayment During the Year . . . . . . . . . . . . . .
7.5.7.1 Annuity Repayment During the Year
7.5.7.2 Repayment by Instalments During
the Year . . . . . . . . . . . . . . . . . . . . . . .
Investment Calculation . . . . . . . . . . . . . . . . . . . . . . . . . .
7.6.1
Fundamental Terms . . . . . . . . . . . . . . . . . . . . .
www.pdfgrip.com
170
172
174
175
176
176
179
179
183
186
190
192
192
193
195
198
199
200
202
204
206
206
210
212
214
214
217
222
222
229
234
235
Contents
XV
7.6.2
7.6.3
7.6.4
8
9
Fundamentals of Financial Mathematics . . .
Methods of Static Investment Calculation . .
Methods of Dynamic Investment Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.6.4.1 Net Present Value Method
(Net Present Value, Amount of
Capital, Final Asset Value) . . . . . . .
7.6.4.2 Annuity Method . . . . . . . . . . . . . . . .
7.6.4.3 Internal Rate of Return Method . .
238
240
241
241
244
246
Optimisation of Linear Models
249
8.1
Lagrange Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.1.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.1.2
Formation of the Lagrange Function . . . . . . .
8.1.3
Determination of the Solution . . . . . . . . . . . . .
8.1.4
Interpretation of l . . . . . . . . . . . . . . . . . . . . . . .
249
249
249
250
251
8.2
Linear Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2.2
The Linear Programming Approach . . . . . . .
8.2.3
Graphical Solution . . . . . . . . . . . . . . . . . . . . . .
8.2.4
Simplex Algorithm . . . . . . . . . . . . . . . . . . . . . .
8.2.5
Simplex Tableau (Basic Structure) . . . . . . . . .
254
254
254
255
258
259
Functions
265
9.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.1.1
Composition of Functions . . . . . . . . . . . . . . .
9.1.2
Inverse Function . . . . . . . . . . . . . . . . . . . . . . .
265
269
271
9.2
Classification of Functions . . . . . . . . . . . . . . . . . . . . . .
9.2.1
Rational Functions . . . . . . . . . . . . . . . . . . . . .
9.2.1.1 Polynomial Functions . . . . . . . . . . .
9.2.1.2 Broken Rational Functions . . . . . . .
9.2.2
Non-rational Functions . . . . . . . . . . . . . . . . . .
9.2.2.1 Power Functions . . . . . . . . . . . . . . . .
9.2.2.2 Root Function . . . . . . . . . . . . . . . . .
273
274
274
274
278
278
281
www.pdfgrip.com
XVI
Contents
9.2.2.3
9.2.2.4
Transcendental Functions . . . . . . . .
9.2.2.3.1 Exponential Functions .
9.2.2.3.2 Logarithmic Functions . .
Trigonometric Functions (Angle Functions/Circular Functions) . . . . . . . . .
282
282
288
294
9.3
Characteristics of Real Functions . . . . . . . . . . . . . . . .
9.3.1
Boundedness . . . . . . . . . . . . . . . . . . . . . . . . . .
9.3.2
Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.3.2.1 Axial Symmetry . . . . . . . . . . . . . . . .
9.3.2.2 Point Symmetry . . . . . . . . . . . . . . . .
9.3.3
Transformations . . . . . . . . . . . . . . . . . . . . . . . .
9.3.3.1 Vertex Form . . . . . . . . . . . . . . . . . . .
9.3.4
Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.3.5
Infinite Discontinuities . . . . . . . . . . . . . . . . . . .
9.3.6
Removable Discontinuities . . . . . . . . . . . . . . .
9.3.7
Jump Discontinuities . . . . . . . . . . . . . . . . . . . .
9.3.8
Homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . .
9.3.9
Periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.3.10 Zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.3.11 Local Extremes . . . . . . . . . . . . . . . . . . . . . . . .
9.3.12 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.3.13 Concavity and Convexity | Inflection Points .
9.3.14 Asymptotes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.3.14.1 Horizontal Asymptotes . . . . . . . . . .
9.3.14.2 Vertical Asymptote . . . . . . . . . . . . .
9.3.14.3 Oblique Asymptote . . . . . . . . . . . . .
9.3.14.4 Asymptotic Curve . . . . . . . . . . . . . . .
9.3.15 Tangent Lines to a Curve . . . . . . . . . . . . . . . .
9.3.16 Normal Lines to a Curve . . . . . . . . . . . . . . . .
322
322
324
324
326
329
331
334
334
336
337
338
339
339
340
341
342
344
345
347
348
349
350
351
9.4
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
352
10 Differential Calculus
10.1
Differentiation of Functions with One Independent
Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.1.2 First Derivative of Elementary Functions . . .
10.1.3 Derivation Rules . . . . . . . . . . . . . . . . . . . . . . .
www.pdfgrip.com
357
357
357
360
362
Contents
XVII
10.1.4
10.1.5
10.1.6
10.2
Differentiation of Functions with More Than One Independent Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.2.1
10.2.2
10.2.3
10.2.4
10.3
Higher Derivations . . . . . . . . . . . . . . . . . . . . . .
Differentiation of Functions with Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Curve Sketching . . . . . . . . . . . . . . . . . . . . . . .
Partial Derivatives (1st Order) . . . . . . . . . . . . .
Partial Derivatives (2nd Order) . . . . . . . . . . . .
Local Extrema of the Function f = f (x, y) . .
10.2.3.1 Relative Extrema without Constraint
of the Function f = f (x, y) . . . . . . .
10.2.3.2 Relative Extrema with m Constraints
of the Function f = f (x1 , . . . , xn )
with m < n . . . . . . . . . . . . . . . . . . . . .
Differentials of the Function f = f (x1 , ..., xn )
Theorems of Differentiable Functions . . . . . . . . . . . . .
10.3.1 Mean Value Theorem for Differential Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.3.2 Generalized Mean Value Theorem for Differential Calculus . . . . . . . . . . . . . . . . . . . . . . .
10.3.3 Rolle’s Theorem . . . . . . . . . . . . . . . . . . . . . . . .
10.3.4 L’Hospital’s Rule . . . . . . . . . . . . . . . . . . . . . . . .
10.3.5 Bounds Theorem for Differential Calculus . .
11 Integral Calculus
364
365
365
375
375
378
380
380
384
388
390
390
391
391
392
393
395
11.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
395
11.2
The Indefinite Integral . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.2.1 Definition/Determining the Antiderivative . . .
11.2.2 Elementary Calculation Rules for the Indefinite Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . .
396
396
The Definite Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.3.2 Relationship between the Definite and the
Indefinite Integral . . . . . . . . . . . . . . . . . . . . . . .
400
400
11.3
www.pdfgrip.com
399
404
XVIII
Contents
11.3.3
Special Techniques of Integration . . . . . . . . .
11.3.3.1 Partial Integration . . . . . . . . . . . . . .
11.3.3.2 Integration by Substitution . . . . . . .
409
409
411
11.4
Multiple Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
412
11.5
Integral Calculus and Economic Problems . . . . . . . . .
11.5.1 Cost Functions . . . . . . . . . . . . . . . . . . . . . . . . .
11.5.2 Revenue Function (= Sales Function) . . . . . .
11.5.3 Profit Functions . . . . . . . . . . . . . . . . . . . . . . . . .
413
413
415
416
12 Elasticities
421
12.1
Definition of Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . .
421
12.2
Arc Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
422
12.3
Point Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
427
12.4
Price Elasticity of Demand exp . . . . . . . . . . . . . . . . . . .
430
12.5
Cross Elasticity of Demand exA pB . . . . . . . . . . . . . . . . .
435
12.6
Income Elasticity of Demand exy . . . . . . . . . . . . . . . . . .
436
13 Economic Functions
439
13.1
Supply Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
439
13.2
Demand Function / Inverse Demand Function . . . . . .
441
13.3
Market Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
443
13.4
Buyer’s Market and Seller’s Market . . . . . . . . . . . . . . .
444
13.5
Supply Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
445
13.6
Demand Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
445
www.pdfgrip.com
Contents
XIX
13.7
Revenue Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
446
13.8
Cost Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
452
13.9
Neoclassical Cost Function . . . . . . . . . . . . . . . . . . . . . .
460
13.10 Cost Function According to the Law of Diminishing
Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
467
13.11 Direct Costs versus Indirect Costs . . . . . . . . . . . . . . . .
13.11.1 One-Dimensional Cost Allocation Principles
13.11.2 Multi-Dimensional Cost Allocation Principles
478
481
483
13.12 Profit Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
486
14 The Peren Theorem
The Mathematical Frame in Which We Live
495
A Financial Mathematical Factors
503
B Bibliography
549
Index
553
www.pdfgrip.com
List of Abbreviations
ACT
Advance Corporation Tax
a.m.
ante meridiem
APR
Annual Percentage Rate
AU
area unit(s)
BCD
Binary Coded Decimal
BEP
break-even point
BGB
German Civil Code
bit
binary digit
calcul.
calculate, calculation
cf.
confer
CFPB
Consumer Financial Protection Bureau
cm
centimetre(s)
CM
Contribution Margin
const.
constant
c.p.
ceteris paribus
det
determinant
e
Euler’s number
EC
European Commission
ED
edition
e.g.
exempli gratia
XXI
www.pdfgrip.com
XXII
List of Abbreviations
etc.
et cetera
EU
European Union
gal.
gallon
gen.
general
h
hour(s)
ICMA
International Capital Market Association
i.e.
id est
incl.
includes, including
inf
infimum
int
integer function
IP
inflection point(s)
IRR
internal rate of return
ISDA
International Swaps and Derivatives Association
j
relative periodic interest rate
kbyte
kilobyte
kg
kilogram(s)
l
litre(s)
lb
pound(s)
lim
limit
ln
natural logarithm
log
logarithm
ltd.
limited
www.pdfgrip.com
List of Abbreviations
XXIII
LU
length unit(s)
max
maximum, maximise
mbyte
megabyte
min
minimise, minimum
min(s)
minute(s)
mm
millimetre(s)
norm
normal
NPV
net present value
opt
optimise, optimisation
oz
ounce(s)
p.a.
per annum
p.m.
post meridiem
QU
quantity unit(s)
rad
radius
regen
regeneration
rep.
repetition
resp.
respectively
sgn
signum
SI
Système International d’Unités
SS
solution set
SU
universal set
www.pdfgrip.com
XXIV
List of Abbreviations
sup
supremum
TU
time unit(s)
USP
unique selling proposition
U.S.
United States of America
w/
with
w/o
without
yd
yard(s)
www.pdfgrip.com
Chapter 1
Mathematical Signs and Symbols
Remark:
The signs and symbols are partly shown in applications. For definitions see dedicated passage.
1.1 Pragmatic Signs
a ⇡ b
a approximately similar to b
a
a large towards b
a⌧b
a small towards b, a can be neglected compared to b
a =
b b
a equivalent to b, e.g. 1 cm =
b 10 mm; 1 inch =
b 25.4 mm
b
a ^ b
a _ b
...
a and b
a or b
and so forth (until), omission
1.2 General Arithmetic Relations and Links
(a, b are figures, elements, objects)
a = b
a equals b, arithmetic fundamental term, identity
a 6= b
a unequal to b, no identity
a := b
a equals b by definition
a < b
a less than b, fundamental term, e.g.
a > b
a greater than b, e.g. 3 > 8
© Springer-Verlag GmbH Germany, part of Springer Nature 2021
F. W. Peren, Math for Business and Economics,
/>
www.pdfgrip.com
6< 2
1
2
1 Mathematical Signs and Symbols
a b
a
b
a less than or (at most) equal to b, a 8 is equivalent to
•, 8]
]
a greater than or (at least) equal to b, is equivalent to b a
a + b
a plus b, sum of a and b, arithmetic fundamental term
a
a minus b, difference between a and b, single-digit
b
linking sign
a · b
a
b
n
 ai
i=1
a times b, product of a and b, arithmetic fundamental term
a divided by b, quotient of a and b, e.g.
16
4
= 16 ÷ 4 = 4
Sum over ai of i equals 1 up to n,
n
 ai = a1 + a2 + a3 + ... + an
i=1
n
’ ai
i=1
n
Product over ai of i equals 1 up to n, ’ ai = a1 · a2 · ... · an
i=1
1.3 Sets of Numbers
N
N⇤
Z
Q
Q⇤
Q+
set of natural numbers, N = {0, 1, 2, ...}
set of positive natural numbers, N⇤ = N \{0} = {1, 2, 3, ...}
set of integers, Z = {...
2, 1, 0, 1, 2, ...}
set of rational numbers, Q = { ab | a, b 2 Z, b 6= 0}
set of rational numbers which vary from zero, Q⇤ = Q \{0}
set of positive rational numbers
Q+
0
set of positive rational numbers plus zero
R
set of real numbers
R⇤
set of real numbers which vary from zero
R+
set of positive real numbers
R+
0
set of positive real numbers plus zero
C
set of complex numbers
]a, b[
open interval from a to b {x | a < x < b}
www.pdfgrip.com
1.4 Special Numbers and Links
]a, •[
3
open, unbounded interval starting at a, {x | a < x}
closed interval from a to b, {x | a x b}
[a, b]
[a, •[
closed, unbounded interval starting at a, {x | a x}
left-closed, right-open interval from a to b, {x | a x < b}
[a, b[
1.4 Special Numbers and Links
(a, b 2 R; n, m 2 Z; s 2 N)
an
p
1
a = a2 = b
p
n
1
n
a=a =b
a to the power of n, n th power of a for n
root (square root) of a, equivalent to
b2
b
0, a
n th
root of a, equivalent to bn = a for b
0
= a for
0
’ni=1 ai
0, a
n!
n factorial, n! =
sgn a
signum of a (algebraic sign), e.g. sgn( 3) =
|a|
absolute value of a, e.g. |
i th
= 1 · 2 · 3 · ... · n
8| = 8
a[i]
a in the
position; e.g. 5; 6; 7; a[2] = 6
•
infinity, note: • is not a number
p
3.1415926...
e
Euler’s Number, e = 2.718281
www.pdfgrip.com
0
1
4
1 Mathematical Signs and Symbols
1.5 Limit
lim f (x) = a
x!0
a is the limit of the function f (x) for x towards 0,
i.e. x x!0 gradually approaches the value 0,
the function’s value f (x) converges (limits)
towards a
lim f (x) = b
b is the limit of the function f (x) for x towards •
lim f (x) = c
c is the limit of the function f (x) for x towards 5
x!•
x!5
1.6 Exponential Functions, Logarithm
ex
exponential function of x, e to the power of x
ln x
natural logarithm of x to base e; loge x = ln x
loga x
logarithm of x to base a; loga x = y , ay = x
log x
with x ; a > 0 and a 6= 1
common logarithm of x to base 10
log x = lg x = log10 x
lb x
binary (dyadic) logarithm of x to base 2
lb x = log2 x
1.7 Trigonometric Functions, Hyperbolic Functions
sin x
sine of x
cos x
cosine of x
tan x
tangent of x
cot x
cotangent of x
www.pdfgrip.com