Lecture Notes in Mathematics
Editors:
A. Dold, Heidelberg
B. Eckmann, Ztirich
F. Takens, Groningen
1534
Cornelius Greither
Cy
clic Galols° Extensions
"
of Commutative Rings
Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest
www.pdfgrip.com
Author
Cornelius Greither
Mathematisches Institut
der Universit~it Miinchen
Theresienstr. 39
W-8000 Mtinchen 2, Germany
Mathematics Subject Classification (1991): l lRt8, 11R23, 11R33, 11S15, 13B05,
13B15, 14E20
ISBN 3-540-56350-4 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-56350-4 Springer-Verlag New York Berlin Heidelberg
This work is subject to copyright. All rights are reserved, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, re-use of
illustrations, recitation, broadcasting, reproduction on microfihns or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in its
current version, and permission for use must always be obtained from Springer-Verlag.
Violations are liable for prosecution under the German Copyright Law.
© Springer-Verlag Berlin Heidelberg 1992
Printed in Germany
Typesetting: Camera ready by author
46/3140-543210 - Printed on acid-free paper
www.pdfgrip.com
CONTENTS
vii
Introduction
Ch,,,~r O: Galots theory of commutative rinsa
§1
§2
§3
§4
§s
§6
§7
§8
Definitions and basic p r o p e r t i e s
The main t h e o r e m o f Gatois t h e o r y
6
Functoriality and the Harrison p r o d u c t
8
Ramification
Kummer t h e o r y and Artin-Schreier t h e o r y
17
19
Normal bases and Galois module s t r u c t u r e
25
Galois d e s c e n t
28
ZP -extensions
30
Chapter I: Clmlotamic deacent
§l
Cyclotomic extensions
§2
§3
1
Descent o f normal bases
C y c l o t o m i c descent: the main t h e o r e m s
32
38
45
H: C m ' e s t r i c ~ o n and "I-Iflbert's T h e o r e m 90"
§1
§2
§3
§4
Corestriction
SS
Lemmas on g r o u p c o h o m o l o g y
60
"Hilbert 90": the kernel and image o f the c o r e s t r i c t i o n
62
Lifting t h e o r e m s
64
HI: Odcttlatlona w i t h units
§1
§2
§3
Results on t w i s t e d Galois modules
67
Finite fields and g - a d i c fields
70
Number fields
73
IV: Cyclic p-extenalona and Z~-extensions of number fields
§1
§2
§3
§4
§5
C p ~ - e x t e n s i o n s and ramification
Z -extensions
Calculation of qr: examples
Torsion points on abelian varieties with
complex multiplication
88
§6
Further results: a s h o r t survey
95
P
The a s y m p t o t i c order o f
P(R, Cp~)
www.pdfgrip.com
77
79
83
91
vi
V: Geometric theory: Cyclic extensions o f finitely generated fields
§1
§2
§3
Geometric prerequisites
97
Zp-extensions of absolutely finitely generated fields 101
A finiteness result
106
~ w t e r Vh Cyclic C ~ o i s theory without ~!~_ condition -p-i  R"
Đ1 Witt rings and Artln-Schreier theory for rings
§2
§3
§4
§S
§6
of characteristic p
Patching results
Kummer theory without the condition ,,p-I ~ R"
The main result and Artin-Hasse exponentials
Proofs and examples
Application: Generic Galois extensions
109
113
116
120
126
135
References
140
Index
144
www.pdfgrip.com
Fiir Liane und f~r Margarete.
INTRODtI~I'ION
The subject o f t h e s e notes is a part o f c o m m u t a t i v e algebra, and is also
c l o s e l y r e l a t e d t o certain topics in algebraic number t h e o r y and algebraic geometry.
The basic p r o b l e m s in Galois t h e o r y o f c o m m u t a t i v e rings are the following: W h a t
is the c o r r e c t definition o f a Galois extension? W h a t are their general p r o p e r t i e s
(in particular, in c o m p a r i s o n with the field case}? And the m o s t fruitful q u e s t i o n
in our opinion: Given a c o m m u t a t i v e ring R and a finite abelian g r o u p G, is there
any possibility o f describing a// Galois extensions of R with group G?
These questions will be dealt with in considerable generality. In later chapters,
we shall t h e n apply the r e s u l t s in n u m b e r - t h e o r e t i c a l and geometrical situations,
which means t h a t we consider more special c o m m u t a t i v e rings: rings o f integers
and rings o f functions. Now algebraic number t h e o r y as well as algebraic g e o m e t r y
have their own refined m e t h o d s to deal with Galois e x t e n s i o n s : in number t h e o r y
one should name class field t h e o r y for instance. Thus, the m e t h o d s o f the general
t h e o r y for Galois extensions o f rings are always in c o m p e t i t i o n with the more
special m e t h o d s o f the discipline where they are applied. It is hoped the reader
will get a feeling t h a t the general m e t h o d s s o m e t i m e s also lead to new r e s u l t s
and provide an interesting approach to old ones.
Let us briefly review the d e v e l o p m e n t o f the subject. Hasse {|949} seems t o
have been the first to consider the t o t a l i t y o f G-Galois extensions L o f a given
number field K. He realized t h a t for finite abetian G this set admits a natural
abelian g r o u p s t r u c t u r e , i f one also admits certain "degenerate" e x t e n s i o n s L / K
which are n o t fields. For example, the neutral e l e m e n t o f this g r o u p is the direct
p r o d u c t o f copies o f K, with index set G. This c o n s t i t u t e s the first f u n d a m e n t a l
idea. The s e c o n d idea, initiated by Auslander and Goldman {1960} and t h e n b r o u g h t
t o p e r f e c t i o n by Chase, Harrison, and Rosenberg (1965L is t o admit base rings R
instead o f fields. It is n o t so obvious what the definition o f a G-Galois e x t e n s i o n
S / R o f c o m m u t a t i v e rings should be, b u t once one has a good definition (by the
way, all g o o d definitions t u r n o u t t o be equivalent}, then one also obtains nice
functoriality properties, stability under base change for instance, and the t h e o r y
runs a l m o s t as s m o o t h l y as for fields. Harrison {1965} p u t the t w o ideas t o g e t h e r
and defined, for G finite abelian, the g r o u p of all G-Galois e x t e n s i o n s o f a given
c o m m u t a t i v e ring R modulo G - i s o m o r p h i s m . This g r o u p is now called the Harrison
group, and we denote it by H(R,G), Building on the general theory o f Chase,
Harrison, and Rosenberg, and developing some new tools, we calculate in these
n o t e s the group H(R,G) in a fairly general setting.
www.pdfgrip.com
viii
The principal link b e t w e e n this t h e o r y and number t h e o r y is the s t u d y o f
ramification. Suppose L is a G-Galois extension o f the number field K, E a set o f
finite places o f K, and R = Or,~: the ring of ) - i n t e g e r s in K. Then the integral
c l o s u r e S o f R in L is with the given G - a c t i o n a G-Galois e x t e n s i o n o f R if and
only if
L/K
is at m o s t ramified in places which belong t o E. In m o s t applications,
will be the set o f places over p. The r e a s o n for this choice will b e c o m e apparent
when we discuss Z - e x t e n s i o n s below.
We now discuss the c o n t e n t s o f these n o t e s in a little more detail.
After a s u m m a r y o f Galois t h e o r y o f rings in Chap. 0, which also explains
the c o n n e c t i o n with number theory, and Z p - e x t e n s i o n s , we develop in Chap. I a
structure theory for Galois extensions with cyclic g r o u p G = Cpn of order pn, under
the hypothesis t h a t p - I e R and p is an odd prime number. For technical reasons,
we also s u p p o s e t h a t R has no nontrivial idempotents. Since the Harrison group
H(R, G) is functorial in b o t h a r g u m e n t s , and preserves p r o d u c t s in the right a r g u ment, this also gives a s t r u c t u r e t h e o r y for the case G finite abelian, IGI- t e R.
The basic idea is simple. If R contains a primitive p n - t h r o o t of unity ~ {this
notion has to be defined, o f course}, and p - t e R, then Kummer t h e o r y is available
for Cp~-extensions o f R. The s t a t e m e n t s of Kummer t h e o r y are, however, more
c o m p l i c a t e d than in the field case: it is no longer true t h a t every C p n - e x t e n s i o n
S/R can be g o t t e n by "extracting the p n - t h r o o t o f a unit of R", b u t the o b s t r u c tion is under control. The procedure is now to adjoin ~, t o R s o m e h o w (it is a lot
of work to make this precise}, use Kummer theory for the ring S
obtained in this
way, and descend again. Here a very i m p o r t a n t c o n c e p t makes its appearance.
A G-Galois extension S/R is defined t o have normal basis, if S has an R - b a s i s of
the f o r m {y(x) [ y e G} for some x e S. Fo G = Cp~, the e x t e n s i o n s with normal
basis make up a subgroup NB(R, Cpn) o f H(R, Cpn). In Chap. I we prove r a t h e r
precise r e s u l t s on the s t r u c t u r e o f NB(R,
Cpn),
and of H(R,
Cpn)/NB(R, Cpn).
In the
field case, the latter g r o u p is trivial, b u t n o t in general. Kersten and Michali~ek
{1988} were the first to prove r e s u l t s for NB(R, Cpn). Our r e s u l t
is "almost" isomorphic t o an explicitly given s u b g r o u p o f
NB(R, Cpn)
powers}, and Hi R, Cpn )/NB(R,
o f the Picard g r o u p o f S .
Cpn )
says t h a t
S,*/(pn-th
is isomorphic to an explicitly given s u b g r o u p
The description o f
NB{R, Cp~}
is basic for the calcula-
tions in Chap. III and V.
In Chap. II we t r e a t c o r e s t r i c t i o n and a r e s u l t o f type "Hilbert 90". This
a m o u n t s t o the following: We get a n o t h e r description o f NB(R,Cp~), this time as
a factor
S~/(p~-th powers}. This is
lifting theorems which conclude
group of
nessed by the
s o m e t i m e s more practical, as witChap. II: If I is an ideal o f R, c o n -
tained in the J a c o b s o n radical o f R, then every C p n - e x t e n s i o n S of
basis is o f the f o r m
S - T/IT, T e NB(R, Cp~).
www.pdfgrip.com
R/I
with normal
ix
In Chap. Ill we set out t o calculate the order o f NB(R, Cp,~), where now
R ----O r [ p - i ] , K a number field. A l t h o u g h one a l m o s t never knows the g r o u p s S t l*
explicitly, which are closely related to the group o f units in the ring o f integers
o f K(~ n), one can nevertheless do the calculation one wants, by dint o f some tricks
involving a little c o h o m o l o g y o f groups. All this is p r e s e n t e d in a quite e l e m e n t a r y
way. We d e m o n s t r a t e the s t r e n g t h o f the m e t h o d by deducing the Galois t h e o r y
o f finite fields, and a piece of local class field theory. The main r e s u l t for number
fields K is t h a t with R as above, and n not "too small", the order o f NB(R, Cpn)
equals c o n s t . p (1 +r2)n, where r 2 is half the number o f nonreal embeddings K -- C
as usual.
The goal o f Chap. IV is t o g e t an understanding, h o w far the s u b g r o u p
NB(R, Cp,~) differs
Cpn. Here H(R, Zp)
from
H(R, Cp,~),
and a similar q u e s t i o n for Zp in the place o f
is the group o f Z p - e x t e n s i o n s of R. A Z p - e x t e n s i o n is basically
a t o w e r o f C p , - e x t e n s i o n s , n -~ co. It is known t h a t all Z p - e x t e n s i o n s of K are
unramified outside p, and hence already a Z p - e x t e n s i o n s o f R, which justifies the
choice o f the ring R.
We prove in IV §2: NB(R,Zp) - Zp1+r 2 . This was previously proved in a speclal case by Kersten and Michali~ek (1989). The r e s u l t is what one expects from
the f o r m u l a for INB( R, Cp~)t, but the passage to the limit p r e s e n t s some subtleties.
The index
qn = [H(R, Cpn):NB(R,Cp~)]
is studied in some detail, and we s h o w t h a t
q~ either goes to infinity or is eventually c o n s t a n t for n -* ~. The first case c o n jecturally never happens: we prove t h a t this case obtains if and only the f a m o u s
Leopoldt c o n j e c t u r e fails for K and p. Another way o f saying this is as follows:
NB(R, Zp) has finite index in H(R, 7p) if and only if the L e o p o l d t conjecture is true
for K and p. We give r e s u l t s a b o u t the actual value of t h a t index; in particular, it
can be different f r o m 1.
Apart f r o m adjoining r o o t s of unity, there is so far only other explicit way
o f generating large abelian extensions o f a number field K, namely, adjoining t o r s i o n
points on abelian varieties with c o m p l e x multiplication. We show in IV §S t h a t
lip-extensions obtained in that way tend to have normal bases over R = O r [ p - i ] ,
and a weak converse t o this s t a t e m e n t . These r e s u l t s are in tune with the much
more explicit r e s u l t s o f C a s s o u - N o g u ~ s and Taylor (1985) for elliptic curves.
There is a change o f scenario in Chap. V. There we consider function fields
o f varieties over number fields. Such function fields are also called absolutely fini-
tely generated fields over
Q. A f t e r some prerequisites f r o m algebraic geometry, we
show a relative finiteness r e s u l t on Cpn-Galois coverings o f such varieties, which
is similar t o r e s u l t s of Katz and Lang (1981), and we prove t h a t
all
Zp-extensions
of an a b s o l u t e l y finitely generated field K already come f r o m the g r e a t e s t number
field k contained in K. In other words: for number fields k one does not know how
www.pdfgrip.com
many independent Zp - e x t e n s i o n s k has, unless L e o p o l d t ' s conjecture is known to
be true for K and p, but in a g e o m e t r i c situation, no new Z p - e x t e n s i o n s arise.
The last chapter {Chap. VI) p r o p o s e s a s t r u c t u r e t h e o r y for Galois e x t e n s i o n s
with g r o u p Cpn, in case the g r o u n d ring R contains a primitive p ~ - t h r o o t o f unity
~n but n o t necessarily p - I e R. It is assumed, however, t h a t p does not divide zero
in R.
Even t h o u g h Kummer t h e o r y fails for R, we may still associate t o many
Cpn-extensions S/R a class ~0n(S) = [u] in R* mod p~ - t h powers. If R is normal,
S will be the integral closure o f R in R[p-l,P~Z-u]. The main question is: Which
units u • R* may occur here? In §2 we essentially p e r f o r m a reduction to the case
R p - a d i c a l l y complete. Taking up a paper o f Hesse {1936), we then answer our
question by using s o - c a l l e d A r t i n - H a s s e exponentials. It t u r n s out t h a t the admissible values u are precisely the values o f certain universal polynomials, with parameters running over R. Reduction mod p also plays an essential role, and for this
r e a s o n we have t o review Gatois t h e o r y in characteristic p in § I. In the final § 6
the d e s c e n t technique o f Chap. ! c o m e s back into play. In §4-5 a "generic"
Cpn-
extension o f a certain universal p - c o m p l e t e ring containing ~ {but not p - l ) was
c o n s t r u c t e d , and we are now able to see in detail how this extension descends
down to a similar g r o u n d ring w i t h o u t ~,,, to wit: the p - a d i c c o m p l e t i o n of Z[X].
This e x t e n s i o n is, roughly speaking, a p r o t o t y p e o f C p n - e x t e n s i o n s o f p - a d i c a l l y
c o m p l e t e rings. All this is in principle calculable.
Most c h a p t e r s begin with a s h o r t overview o f their c o n t e n t s . C r o s s references
are indicated in the usual style: the chapters are numbered O, I, II . . . . . VI, and a
reference number not containing O or a Roman numeral means a reference within
the same chapter.
All rings are supposed commutative {except, occasionally, an
e n d o m o r p h i s m ring), and with unity. Other conventions are s t a t e d where needed.
Earlier versions o f certain p a r t s o f these notes are contained in the journal
articles Greither {1989), {1991).
It is my pleasurable duty t o thank my colleagues who have helped to improve
the c o n t e n t s o f these notes. Ina Kersten has influenced the p r e s e n t a t i o n o f earlier
versions in many ways and provided valuable information. Also, the helpful and
detailed r e m a r k s o f several referees are appreciated; I like to think t h a t their
s u g g e s t i o n s have r e s u l t e d in a b e t t e r organization o f the notes. Finally, I am
grateful for w r i t t e n and oral c o m m u n i c a t i o n s t o S. Hllom, G. Malle, G. Janelidze,
and T. Nguyen Quang Do.
www.pdfgrip.com
CHAPTER 0
Galois
theory
of
colnlnutative
rings
§I Deflaltlo~ and b~lc
The s t u d y o f G a l o i s e x t e n s i o n s o f c o m m u t a t i v e r i n g s w a s i n i t i a t e d by A u s l a n d e r
and G o l d m a n (1960) and d e v e l o p e d by Chase, H a r r i s o n , and R o s e n b e r g (1965). In
t h i s s e c t i o n we s h a l l t r y t o p r e s e n t t h e b a s i c s of t h i s t h e o r y . O c c a s i o n a l l y we
r e f e r to t h e p a p e r of Chase, H a r r i s o n , and R o s e n b e r g for a p r o o f . A l m o s t e v e r y thing we say in t h i s s e c t i o n is can be f o u n d t h e r e , or in t h e c o m p a n i o n p a p e r
H a r r i s o n (1965), s o m e t i m e s w i t h p r o o f s which d i f f e r f r o m ours.
Let G be a finite g r o u p , K c L a field e x t e n s i o n . Then, as e v e r y b o d y a g r e e s ,
L / K is a G a l o i s e x t e n s i o n w i t h g r o u p G if and only if:
G is a s u b g r o u p of A u t ( L / K ) , t h e g r o u p of a u t o m o r p h i s m s of L
which fix all e l e m e n t s o f K; and
K = L c, t h e field of all e l e m e n t s of L which are fixed by every
a u t o m o r p h i s m in G.
A l i t e r a l t r a n s l a t i o n o f t h i s d e f i n i t i o n w o u l d r e s u l t in a t o o weak d e f i n i t i o n in t h e
f r a m e w o r k o f c o m m u t a t i v e rings, f o r many r e a s o n s . Let us n o t p u r s u e this, b u t
r a t h e r p o i n t o u t t w o a l t e r n a t i v e d e f i n i t i o n s of "Galois e x t e n s i o n " in t h e field c a s e
which t u r n o u t t o g e n e r a l i z e well, and which indeed give e q u i v a l e n t g e n e r a l i z a t i o n s .
Thus, we will have f o u n d t h e " c o r r e c t " n o t i o n o f a G a l o i s e x t e n s i o n of c o m m u t a tive rings. S u p p o s e t h a t G is a finite g r o u p which a c t s on L by a u t o m o r p h i s m s
which fix all e l e m e n t s of K. We t h u s have a g r o u p h o m o m o r p h i s m G -~ A u t ( L / K ) .
D e f i n i t i o n 1.I, The K - a l g e b r a L a G is t h e L - v e c t o r s p a c e (~oe¢LuG ( t h e u o are j u s t
f o r m a l s y m b o l s ) , with m u l t i p l i c a t i o n given by (Xuo)(itu~) ---- X.c(it)-uc~ (X,iteL).
The map j: L a G -) E n d r ( L ) is given by
jC~u o) = (it ~
X'o(~)) ~ E n d r ( L ) .
~ 9_ j is a well-defined K-algebra homomorphism, which is bijective i f f
G is embedded in A u t ( L / K ) and L / K is a G-Galois extension.
~poslUon
Proof. The f i r s t s t a t e m e n t is e a s y to check. A s s u m e G c A u t ( L / K )
and L / K
is
G - G a l o i s . Then by D e d e k i n d ' s L e m m a t h e e l e m e n t s a of G are L - l e f t l i n e a r l y i n d e p e n d e n t in E n d x ( L ) , hence j is a m o n o m o r p h i s m . Since d i m r ( L ~ G ) --- [L:K] 2 ---d i m r E n d x ( L ) , j is bijective.
www.pdfgrip.com
2
chap. 0
If G -* A u t ( L / K )
is not injective, then there exist ~ ~= z in G with ](o) = j(z).
i.e. j c a n n o t be monic. If G embeds into A u t ( L / K )
but L / K fails to be G-Galois,
then there exists x e L \ K fixed under G. A s h o r t calculation s h o w s then t h a t l =
(left multiplication by x) c o m m u t e s with Im(j) c Endr(L}. If j were surjective, we
w o u l d have l
~ o n
in the c e n t e r o f E n d r ( L ) , i.e. x e K, contradiction.
L3. The K - a l g e b r a L(a) is defined to be the set o f all maps G -* L, e n d o -
wed with the obvious addition and multiplication. (Note t h a t L ~, w i t h o u t brackets,
d e n o t e s a fixed field.) Let h: L ®K L --~ L(c~ be defined by h ( x ® y ) = ( x . o ( y ) ) o e G.
~ o n
L4. The map h is a L - a l g e b r a h o m o m o r p h i s m (here L operates on the left
f a c t o r o f L ®r L), and h is bijective i f f G e m b e d s into E n d r ( L ) and L / K is G-Galois.
Proof. The first s t a t e m e n t is obvious. Pick a K - b a s i s Yi . . . . . Yn o f L. Then I® Yr
. . . . l®y~ is an L - b a s i s o f L ®r L. Thus we see t h a t h is bijective iff the matrix
(o(yt))oeG, l
condition says t h a t the images o f all 0eG are L - l e f t linearly independent in
E n d r ( L ) , or (what is the same) t h a t the map j of 1.1 is injective. Hence 1.4 f o l l o w s
f r o m 1.2.
Motivated by these descriptions o f Galois field extensions, we define for any
finite g r o u p G:
l~tlm'Llon 1~. An e x t e n s i o n R c S o f c o m m u t a t i v e rings is a G-Galois extension, if
G is a s u b g r o u p o f A u t ( S / R )
= {~o: S -~ S]~ R - a l g e b r a automorphism}, s u c h t h a t
R = S c (fixed ring under G), and the map h: S®t~S ~
S (c), h ( x ® y ) = ( x o ( y ) ) o e G
exactly as in 1.3, is bijective, or (what is the same) an S - a l g e b r a isomorphism.
lSAtamplml: a) Galois extensions o f fields are obviously a special case.
b) For any c o m m u t a t i v e ring R we have the trivial G - e x t e n s i o n S = R (~) which
is defined as follows: The algebra R (c) is again just Map(G,R) with the canonical
R - a l g e b r a s t r u c t u r e , and the action o f G is given by index shift:
=
for
o
G,
It is an easy exercise to prove t h a t in this case indeed S a = R and h is bijective.
We shall see more examples below.
There exist plenty o f o t h e r definitions, or r a t h e r characterizations, o f G-Galois
e x t e n s i o n s o f c o m m u t a t i v e rings. Some o f t h e m are listed in the next theorem:
~ L 6 .
[ C h a s e - H a r r i s o n - R o s e n b e r g (1965), Thm. 1.3]:
tative rings, G c A u t ( S / R )
conditions are equivalent:
Let R c S be c o m m u -
a f i n i t e s u b g r o u p such that S ~ = R. Then the following
(i) S / R is G-Galois (i.e. p e r def.: h: S ®e S ~
(ii) h: S @1~S----* S (~) is surjective;
www.pdfgrip.com
S (~) is bijective);
§1
3
(iii) S is a f i n i t e l y g e n e r a t e d p r o j e c t i v e R - m o d u l e , and the m a p j: S : : G ~ E n d a ( S )
( d e f i n e d as in 1.1 ) is bijective;
(iv) F o r any o e G \ { e ~ } and any m a x i m a l ideal M c S, there exists y ~ S
with
o(y) - y not in M.
Proof. Let us first reformulate condition (ii).O n e sees easily that h is compatible
with the G-action, where G acts naturally on the second factor of S ®~ S, and by
index shift on S ~}, exactly as in example b) above. Therefore h is surjective iff
the element (I, 0 ..... O) is in Ira(h) (the I is at position ec). Letting ~xt®y ~ be a
preimage of (I, 0 ..... O) under h, w e get the following reformulation of (ii):
(ii') T h e r e e x i s t n e ~
and x I ..... x , Yl ..... Yn ¢ S s u c h t h a t ~ l x ~ o ( y t )
is 1 or 0,
according to whether o = e G or c 4: e c. ( W e m a y write ~=ixto(yt) = ~c,e.)
(i} ~
(ii') ~
(ii): This is trivial.
(iii): W e f i r s t s h o w t h a t RS is finitely g e n e r a t e d projective. Define t h e trace
tr: S --* R by tr(y) = ~,acGo(y). (tr is w e l l - d e f i n e d since S ~ = R, and R - l i n e a r since
all o e G are R - l i n e a r . ) Let ~0t: S -*R be d e f i n e d by ~0t(z) = tr(zy~), z ~ S. T h e n t h e
f o r m u l a o f (ii') implies by d i r e c t c a l c u l a t i o n : z = ~.~t(z).y~ f o r all z e S, i.e. t h e
pairs (xt,~o t) are a dual basis f o r aS, w h i c h is h e n c e finitely g e n e r a t e d projective.
N o w w e may, by l o c a l i z a t i o n , a s s u m e h a t S is even finitely g e n e r a t e d f r e e
over R, w i t h b a s i s x l',...,x n', say. W e m a y t h e n a s s u m e t h a t t h e x~ in c o n d i t i o n (ii')
are j u s t t h e xl', b e c a u s e every e l e m e n t o f S® S can be w r i t t e n in t h e f o r m ~.xt'®yt',
and it d o e s n o t m a t t e r j u s t h o w we w r i t e a p r e i m a g e o f (1,0,...0) u n d e r h. Let us
therefore
o m i t t h e ' again. F r o m t h e c a l c u l a t i o n
just
performed
we g e t x j =
~tq)t(xy).xt, h e n c e by d e f i n i t i o n o f ~ , and since t h e x l are a basis, tr(xyy t) = ~y.
As in t h e field case, bijectivity o f j is e q u i v a l e n t t o invertibility o f t h e m a t r i x A
= ( o ( x t ) ) o , u O n e c a l c u l a t e s as f o l l o w s : Let B = (x(yj))y, T. Then A B = (So,z) =
unit m a t r i x (use (ii'}), and BA = (tr(xyyt))j~---- unit matrix. H e n c e A is invertible,
a n d j is bijective.
(iii) ~
(i): Since S is finitely g e n e r a t e d p r o j e c t i v e over R, we m a y again a s s u m e
t h a t S is free over R, w i t h basis x I ..... x n. As in t h e l a s t p a r a g r a p h , j is bijective iff
t h e m a t r i x A = (o(xt))o, l is invertible. As in t h e field case, this is again e q u i v a l e n t
t o t h e bijectivity o f h.
(ii') ~ (iv): J u s t s u p p o s e o * e a ( = id), a n d o ( y ) - y ~ M f o r all y ¢ S .
~ t x t ( y t - o ( y t ) ) e M, c o n t r a d i c t i o n .
(iv) ~
Then 1 =
(ii'): W e f i r s t c o n s t r u c t a s o l u t i o n o f t h e f o r m u l a in (ii') f o r a single o * e~
By (iv), t h e ideal o f S g e n e r a t e d by all y - o ( y ) is c o n t a i n e d in no m a x i m a l ideal,
h e n c e is equal t o S. O n e finds h e n c e n o e IN and x l ( ° ) ,
x(O) y(O) .... y r ~ ) e S
•--, n O ,
with ~.,x,(o).(y,(O)-o{yl(°)))----I. N o w one lets x 0 = ~,:~x,(O).o(y {°)) and Y0 -- -I.
www.pdfgrip.com
4
chap. 0
W e t h e n g e t ( s u m m a t i o n f r o m 0 t o no): ~ , x t ( ° ) ' y t ( ° ) = 1 a n d ~ x f ( ° ) . c ( y t ( ° ) ) = O.
Now one shuffles together these solutions for individual o to a solution for all o
as f o l l o w s : L e t I b e t h e i n d e x s e t 1-[ceG\e{0 ..... no}; f o r e a c h i E I, l e t x i b e t h e
(0)
p r o d u c t o f a l l x | ( o ) w i t h o # e, a n d Yi s i m i l a r l y . O n e c a n t h e n c h e c k t h a t i n d e e d
f o r a l l c e G: ~ i x l . c ( y
l) is e q u a l t o ~c,e' q.e.d.
In o u r o p i n i o n , it is i n s t r u c t i v e t o u s e t h e t h e o r y o f f a i t h f u l l y f l a t d e s c e n t a l r e a d y a t t h i s e a r l y s t a g e o f G a l o i s t h e o r y o f r i n g s . To t h i s e n d , r e c a l l t h a t a n
R - m o d u l e M is f a i t h f u l l y flat if M is f l a t , a n d M / P M
:6 0 f o r e a c h m a x i m a l i d e a l
P o f R. I t is a n o t h e r c h a r a c t e r i z a t i o n o f f a i t h f u l f l a t n e s s t h a t t h e f u n c t o r M ® a preserves and detects short exact sequences of R-modules. One has the following
easy results:
P r o p o a t t l o n 1 3 . [ K n u s - O j a n g u r e n (1974), B o u r b a k i A l g . c o m m . I §3] Let M be a f a i t h -
f u l l y flat R - m o d u l e , and ~p: A -~ B a h o m o m o r p h i s m o f R - m o d u l e s . Then q~ is an isomorphism i f f M ® Rq~: M ® a A ~ M ® R B is an isomorphism. The statement remains correct, i f the word "isomorphism" is replaced by " m o n o m o r p h i s m " , or by "epimorphism".
This s i m p l e r e s u l t a l r e a d y h a s a p p l i c a t i o n s . S u p p o s e T is a n R - a l g e b r a w h i c h
is a f a i t h f u l l y f l a t R - m o d u l e , a n d s u p p o s e S is a r i n g e x t e n s i o n o f R s u c h t h a t t h e
f i n i t e g r o u p G a c t s o n S by R - a u t o m o r p h i s m s .
P r o p o a l t J o n L 8 . Under these hypotheses, S / R
One can then state
is a G-Galois extension i f T ® R S is a
G-Galois extension over T.
Proof. W e m a y c o n s i d e r T = T® s R a s a s u b a l g e b r a o f T® R S, s i n c e T is f l a t . W e
use the defining property of "G-Galois" and check that the map
hr: ( T o R S ) ® r ( T o ~ S ) - - ~
(ToRS)C~)
a s s o c i a t e d in Def. 1.5. w i t h t h e e x t e n s i o n T c T ® R S is, u p t o c a n o n i c a l i s o m o r p h i s m , j u s t T ® h ( w h e r e h: S ® a S - - ~
S ~a~ is t h e m a p o f Def. 1.5. f o r t h e e x t e n s i o n
R c S). By 1.7, if T ® h is an i s o m o r p h i s m , t h e n s o is h. W e s t i l l have t o s h o w t h a t
S a = R, i.e, t h e c a n o n i c a l m a p ~: R ~ S a is o n t o . But it f o l l o w s f r o m t h e f l a t n e s s
o f T t h a t (T® n S) a - T® R S a, h e n c e T®t is o n t o . By 1.7, w e a r e d o n e .
The c o n v e r s e o f 1.8 is " m o r e t h a n t r u e " , in t h e s e n s e t h a t b a s e c h a n g e a l w a y s
preserves G-Galois extensions (not only faithfully flat base change). We will see
this a little later.
Lamina 1.9, A n y G-Galois extension S / R is f a i t h f u l l y flat over R.
Proof. F l a t n e s s is c l e a r s i n c e S / R
is p r o j e c t i v e by T h m . 1.6 (iii). Pick a m a x i m a l
ideal P o f R; w e n e e d S / P S ~: O. By N a k a y a m a , it s u f f i c e s t o s e e S p ~ : 0 . B u t R c S,
and localization preserves monomorphisms,
so we are done.
This l e m m a s u g g e s t t o t r y o u t S in t h e r o l e o f T; t h e r e s u l t
is s t r i k i n g l y
simple, but we first need to define morphisms of G-Galois extensions:
www.pdfgrip.com
§1
s
Daflm~t~
If S a n d S ' are t w o G - G a l o i s e x t e n s i o n s , t h e n a m o r p h i s m ~p: S -, S' is
a G - e q u i v a r i a n t R - a l g e b r a h o m o m o r p h i s m from S to S'. (G-equivariance means of
c o u r s e : q0(ox) = c g ( x ) for all o e G, x e S.) The G - G a l o i s e x t e n s i o n S / R
is c a l l e d
trivial, if it is i s o m o r p h i c t o t h e t r i v i a l e x t e n s i o n R ( a ) / R .
l ~ m m ' i r . I t is o b v i o u s t h a t w e o b t a i n a c a t e g o r y GAL(R, G) o f G - G a l o i s e x t e n s i o n s
o f a g i v e n r i n g R.
N o w w e c a n see t h a t " b a s e - e x t e n d i n g a n y G a l o i s e x t e n s i o n w i t h i t s e l f gives a
t r i v i a l e x t e n s i o n " . M o r e p r e c i s e l y : Let S / R b e a G - G a l o i s e x t e n s i o n , l e t T = S, a n d
c o n s i d e r t h e r i n g e x t e n s i o n T® a S / T . Since T = S, it is n o w e a s y t o c h e c k t h a t t h e
i s o m o r p h i s m h: S ® a S
~
S (c) gives a n i s o m o r p h i s m o f G - G a l o i s e x t e n s i o n s h:
T o R S-~ T (a). Recall t h a t G o p e r a t e s n a t u r a l l y o n t h e s e c o n d f a c t o r S, a n d by i n d e x
s h i f t o n S (c). W e n o w c a n p r o v e a r e s u l t o n t h e t r a c e :
l ~ l n l l ~ L|O. Let S / R be G-Galois, and tr: S ----* R the trace ( s e e p r o o f (ii') ~
(iii) o f
1.6}. Then:
a} tr: S --> R is s u r j e c t i v e
b} The R - s u b m o d u l e R o f S is a direct s u m m a n d o f S.
P r o o f . a} By t h e p r e v i o u s r e m a r k s , S ® S / S o R
(= S} is i s o m o r p h i c t o t h e t r i v i a l e x -
t e n s i o n o f S. O n e has a c o m m u t a t i v e d i a g r a m
S o R S
"
•
Sotr [
SoaR
S (G)
l trs
"
~
S
w h e r e tr s is t h e t r a c e a s s o c i a t e d t o t h e e x t e n s i o n S
in S ca~, a n d o n e s e e s f r o m t h e way G a c t s o n S
d i a g ( x ) for all x e S. H e n c e tr s is o n t o ; by 1.7, tr is o n t o .
b} Pick c e S w i t h tr(c) = 1, a n d let f : S -) R b e d e f i n e d by f ( x ) = t r { c x l . T h e n
f is a n R - l i n e a r s e c t i o n o f t h e i n c l u s i o n R c S, s o R is a d i r e c t s u r n m a n d o f S.
N o w we c a n s h o w :
l ~ m m a 1.1L Let S / R b e G-Galois, and T any R - a l g e b r a . T h e n T o a S / S
is again a
G-Galois e x t e n s i o n .
P r o o f . W r i t e S r f o r T o R S.We w a n t t h r e e t h i n g s : T e m b e d s in S r, Sr a = T, a n d hr:
S r o r S r ---- Sr(a~ is a n i s o m o r p h i s m . The l a s t c o n d i t i o n is t h e e a s i e s t t o see,
s i n c e we k n o w a l r e a d y t h a t h r is {up t o c a n o n i c a l i s o m o r p h i s m ) j u s t Toh, a n d h is
a n i s o m o r p h i s m by h y p o t h e s i s . Since R s p l i t s o f in S, t h e m a p T -* S r a l s o s p l i t s ,
in p a r t i c u l a r T is a s u b r i n g o f S r. To see t h e s e c o n d c o n d i t i o n , we a r g u e as in
www.pdfgrip.com
6
chap. 0
Chase-Harrison-Rosenberg
(1965): Pick c e S w i t h t r ( c ) = 1 ( L e m m a 1.10). a n d l e t
y e S r b e f i x e d u n d e r G.
Then
~o(T®o)((l®c)'y)
=
y
=
(T®tr)((l®c)'y)
(T®tr)(l®c)'y
~
Im(T®tr)
~o(l®o(c))'y
T ® R ---- T, q.e.d.
=
----
=
As another example of this descent technique, we show the following important fact:
~'ol)oBlUon LI2. Let S/R
and S ' / R
b e G - G a l o i s . T h e n e v e r y m o r p h i s m ~p: S ~ S' o f
G - G a l o i s e x t e n s i o n s is an i s o m o r p h i s m .
P r o o f . T h e r e e x i s t s a f a i t h f u l l y f l a t R - a l g e b r a T s u c h t h a t b o t h S r (= T® R S) a n d
S ' r a r e t r i v i a l G - e x t e n s i o n s o f T. ( T r i v i a l G - e x t e n s i o n s a r e o b v i o u s l y p r e s e r v e d b y
arbitrary base change. Hence one can for example take T = S® R S', since base extension with S (resp. S') trivializes S/R
(resp. S'/R).)
I t is o b v i o u s t h a t T®~o is a
m o r p h i s m f r o m S r t o S ' r. W e m a y n o w s u p p o s e , b y v i r t u e o f 1.7, t h a t T = R ( f r e s h
n o t a t i o n ) , S = S ' = R (el. M o r e o v e r it is h a r m l e s s t o s u p p o s e R l o c a l . L e t n o w e a
R c¢) b e t h e e l e m e n t w i t h 1 in p o s i t i o n a a n d 0 e l s e w h e r e (a e G). T h e s e e a, a e G,
a r e a c o m p l e t e s e t o f i r r e d u c i b l e i d e m p o t e n t s o f R (a~, a n d t h e y a r e p e r m u t e d b y G
in an o b v i o u s f a s h i o n . In p a r t i c u l a r , G p e r m u t e s t h e e a t r a n s i t i v e l y . G e t t i n g b a c k
t o o u r m o r p h i s m ~, w e n o w s e e t h a t t h e ~ ( e °) a r e p a i r w i s e o r t h o g o n a l i d e m p o t e n t s
w i t h s u m 1. I f a n y o f t h e m is z e r o , t h e n a l l a r e z e r o s i n c e ~0 is G - e q u i v a r i a n t , s o
no ~ ( e o) is z e r o . T h e r e f o r e ~ m u s t s i m p l y p e r m u t e t h e e a, w h i c h i m p l i e s i m m e d i a t e l y t h a t ~0 is an i s o m o r p h i s m .
§ 2 The main theorem o f Galols theory
W e fix a f i n i t e g r o u p G a n d a G - G a l o i s e x t e n s i o n S / R
Can one find a bijection between subgroups
of (commutative) rings.
H c G and R-subalgebras
U c S?
C e r t a i n l y t h i s p r o b l e m is n o t w e l l p o s e d if w e a d m i t all s u b a l g e b r a s . ( A l r e a d y f o r
R = Z a n d I G I - - 2, t h e t r i v i a l G - e x t e n s i o n S - - Z × Z h a s i n f i n i t e l y m a n y s u b a l g e b r a s . ) T h e c o r r e c t c o n d i t i o n t o i m p o s e o n s u b a t g e b r a s is s e p a r a b i l i t y , an i m p o r t a n t
c o n c e p t in i t s e l f . O n e m a y f o u n d t h e w h o l e t h e o r y o n t h i s c o n c e p t , w h i c h w e
avoided for the sake of simplicity; we shall use separable algebras practically only
in C h a p t e r 0, a n d a s l i t t l e a s p o s s i b l e . Let us j u s t r e c a l l t h e d e f i n i t i o n a n d r e f e r
the interested reader to DeMeyer-Ingraham
(1971). W e r e m i n d t h e r e a d e r t h a t a l l
rings are supposed commutative.
www.pdfgrip.com
§2
7
I ~ t l u L U o n A n R - a l g e b r a S is c a l l e d separable if S is p r o j e c t i v e a s a m o d u l e o v e r
S ® R S ( t h e s t r u c t u r e is ( s ® t ) y = syt f o r y e S, s đ t ã S ® S ) .
I f one a d m i t s n o n -
c o m m u t a t i v e a l g e b r a s S, o n e h a s t o t a k e S® S °pp in t h e p l a c e o f S® S.
EmLmple. I f R c S is a f i e l d e x t e n s i o n o f f i n i t e d e g r e e , t h e n S is a s e p a r a b l e R - a l gebra iff the extension S/R
is s e p a r a b l e in t h e u s u a l s e n s e .
G a t o i s e x t e n s i o n s a r e a l w a y s s e p a r a b l e ; m o r e p r e c i s e l y , t h e r e is t h e f o l l o w i n g
e x t e n s i o n t o T h e o r e m 1.6:
21
Let S / R
b e an e x t e n s i o n o f rings, G a f i n i t e s u b g r o u p o f A u t ( S / R )
such that S ~ = R. T h e n the f o l l o w i n g are equivalent:
(i) S / R
is G-Galois
(ii) S is separable o v e r R, and f o r each n o n z e r o idempotent e • S and any c,
• G with c * z, there e x i s t s y • S with e ' o ( y ) * e . z ( y ) . ( N o t e that the last c o n dition is vacuously true i f S has no idempotents beside 0 and 1.)
Proof. See C h a s e - H a r r i s o n - R o s e n b e r g
(1965), Thin. 1.3. T h e l a s t c o n d i t i o n in (ii) is
a b b r e v i a t e d t o "if o * z, t h e n c a n d ~ a r e strongly distinct" in l o c . c i t .
To k e e p m a t t e r s s i m p l e , l e t us a s s u m e f r o m n o w o n t h a t S is c o n n e c t e d , i.e. S
h a s no i d e m p o t e n t s b e s i d e s 0 a n d 1. The f i r s t p a r t o f t h e M a i n T h e o r e m r u n s a s
follows:
T h e o r e m 9_9_. [ C h a s e - H a r r i s o n - R o s e n b e r g
(1965)] Let S / R
be a G-Galois e x t e n s i o n ,
H c G a s u b g r o u p , and let U = S n be the s u b a l g e b r a o f H - i n v a r i a n t e l e m e n t s . Then:
(i) U is separable over R
(ill S is, in the canonical way, an H - G a l o i s e x t e n s i o n o f U
(iiil H is the group o f all c • G which leave U pointwise f i x e d
(iv) I f H is a normal s u b g r o u p o f G, then U is, in the canonical way, a G / H Galois e x t e n s i o n o f R.
P r o o f . W e i n c l u d e m o s t o f t h e p r o o f , in o r d e r t o give t h e r e a d e r a b e t t e r f e e l i n g
f o r t h e t h e o r y . O u r a r g u m e n t is m a i n l y t h e o r i g i n a l o n e ( l o c . c i t . ) ; t h e c h a n g e s r e flect personal tastes and do not claim to be simplifications. Parts of the proof can
be understood without any knowledge about separable algebras.
(ii): C h o o s e x 1..... xn" Yl ..... Y~ • S a s in (ii') ( p r o o f o f 1.6). T h e n , a f o r t i o r i ,
~lxic(yl)
= ~o,id f o r a l l c • H. The f o r m u l a S n = U h o l d s b y d e f i n i t i o n . H e n c e S / U
is
H - G a l o i s b y Thm. 1.6.
(i): By (ii) a n d T h m . 1.6 (iii), S is p r o j e c t i v e o v e r U, h e n c e S® R S is p r o j e c t i v e o v e r
U® a U. R e c a l l i n g t h e d e f i n i t i o n o f s e p a r a b l e a l g e b r a s , w e s e e f r o m T h m . 2.1 t h a t
S is p r o j e c t i v e o v e r S® R S. H e n c e , b y a n e a s y a r g u m e n t , S is p r o j e c t i v e o v e r U® R U.
B u t U is a d i r e c t s u m m a n d o f S ( a s a U - m o d u l e , a n d h e n c e a s a U® U - m o d u l e ) ,
b y (ii) a n d L e m m a 1.10 c). H e n c e U is p r o j e c t i v e o v e r U® R U, q.e.d.
www.pdfgrip.com
8
chap. 0
(iii): W e r e p r o d u c e t h e d i r e c t a r g u m e n t o f Chase, H a r r i s o n , and R o s e n b e r g . Let
H ' = { o e G l a f i x e s U pointwise}. Then H c H ' and S n ' = S H = U. A p p l y i n g (ii)
a n d t h e d e f i n i t i o n o f G a l o i s e x t e n s i o n t o U a n d b o t h o f H, H ' , we o b t a i n t h a t
SeaS
is s i m u l t a n e o u s l y i s o m o r p h i c t o S ~n; a n d t o S Cn'~, which f o r c e s till = I H ' h
a n d hence H = H ' .
(iv): See loc.cit, p.23. A n o t h e r a p p r o a c h : Reduce by f a i t h f u l l y f l a t d e s c e n t t o t h e
c a s e S = R (~) and check d i r e c t l y t h a t S H is c a n o n i c a l l y i s o m o r p h i c t o S (G/n). By
t h e way: It is n o t d i f f i c u l t t o p r o v e a l s o (ii) by t h i s m e t h o d .
The c o n v e r s e o f t h i s t h e o r e m r e a d s as f o l l o w s f o r c o n n e c t e d g r o u n d r i n g s R.
W a r n i n g : f o r n o n c o n n e c t e d R t h e s t a t e m e n t is m o r e involved, see Chase, H a r r i s o n ,
and R o s e n b e r g (1965).
2.3. Let R, S, and G be as in 2.2; let U c S be a separable R-subalgebra.
Then there is a subgroup H o f G with U = S It, and H is o f necessity the group o f all
ae G f i x i n g U pointwise.
F o r t h e proof, we r e f e r t o loc.cit. (The t h e o r y o f s e p a r a b i l i t y is u s e d in an e s s e n tial way.)
03 Punctmqal~y, and the Harrison
product
In t h i s s e c t i o n we s u m m a r i z e t h e p a p e r of H a r r i s o n (1965). Several p r o o f s are
omitted.
W e have a l r e a d y s e e n in §l t h a t any h o m o m o r p h i s m f : R -~ T o f c o m m u t a t i v e
r i n g s i n d u c e s a f u n c t o r "base e x t e n s i o n " f r o m t h e c a t e g o r y GAL(R,G) o f G - G a l o i s
e x t e n s i o n s o f R t o t h e c a t e g o r y GAL(S,G). W e now c o n s i d e r t h e s e c o n d a r g u m e n t
w i t h t h e aim o f e s t a b l i s h i n g f u n c t o r i a l i t y in G, t o o . F o r m o t i v a t i o n , c o n s i d e r a f i n i t e
g r o u p G and a f a c t o r g r o u p G/N. Then in t h e c l a s s i c a l c a s e t h e r e is j u s t one way
t o a s s o c i a t e a G / N - G a l o i s e x t e n s i o n w i t h a given G - G a l o i s e x t e n s i o n L / K : j u s t
t a k e L N / K . This w o r k s f o r r i n g s j u s t as well, by Thm. 2.2. It is i m p o r t a n t , however,
t o a l l o w g e n e r a l g r o u p h o m o m o r p h i s m s n: G -* H. Before giving t h e c o n s t r u c t i o n ,
l e t us b r i e f l y m e n t i o n t h e c a s e w h e r e n is t h e i n c l u s i o n o f G in H. This c a s e has
no c o u n t e r p a r t in c l a s s i c a l G a l o i s t h e o r y ; it will t u r n o u t t h a t in t h i s c a s e t h e
m a p ~*: GAL(R,G) -~ GAL(R,H) is given by a s o r t o f i n d u c t i o n p r o c e s s , as in r e p r e s e n t a t i o n t h e o r y , a n d even if S / R is a G - G a l o i s f i e l d e x t e n s i o n , 7t*(S/R) is never
www.pdfgrip.com
§3
9
a field unless G ----H. E x t r e m e example: G ----e, and S is the(!) G - G a l o i s e x t e n s i o n
R o f R. Then ~ R will t u r n out t o be the trivial H - e x t e n s i o n o f R. Now we p r e s e n t
the general result.
Tlmorem 3_1- a) Let R be a commutative ring R, ~: G ~ H a homomorphism o f finite
groups. Then there is a canonical functor ~*: GAL(R,G) -~ GAL(R,H). I f ~ happens
to be a canonical surjection G -~ G / N , then ~*(S) = S ~ as in the above discussion.
(For the construction o f ~ ~, see the proof o f this theorem.)
b) The prescription "~ ~ ~ " preserves composition up to canonical isomorphism.
In other words: I f we let H(R,G) be the set o f isomorphism classes o f G-Galois extensions o f R, then H(R,G) is again functorial in G, and the prescription "~ ~-~ H(R,~)"
now preserves composition.
I~lamltAo~ The s e t H(R,G) j u s t defined is also called the Harrison set o f R and G.
Proof o f Thm. 3.1. We do a) and b) s i m u l t a n e o u s l y . First we define ~*. Let S
GAL(R,G). We s e t
~*S = M a p ~ ( H , S ) ( = {x: H ~ S[VgeG, h~H: x ( ~ ( g ) h ) = g ( x ( h ) ) } . )
The H - a c t i o n on ~*S is given by (h'~x)(h) = x(h.h') f o r x ~ M a p ~ ( H , S ) , h , h ' ¢ H .
The R - a l g e b r a s t r u c t u r e is defined " c o m p o n e n t - w i s e " , i.e. by the inclusion o f
M a p ~ ( H , S ) in M a p ( H , S ) = S ~s~. (It is immediate t h a t M a p ~ ( H , S ) is indeed a s u b algebra.)
One sees easily t h a t ~* is a f u n c t o r f r o m GAL(R,G) in the c a t e g o r y o f R - a l g e bras with action o f H. It remains to establish:
(i) If ~b: H -~ J is a n o t h e r g r o u p h o m o m o r p h i s m , t h e n we have a natural i s o m o r p h i s m ¢*(n*S) ,, (¢n)*S;
(ii) n * S / R is, with the given H - a c t i o n , indeed an H - G a l o i s extension.
We do (i) first, by exhibiting natural bijections
Map~(J, Map~(H,S))
~
M a p ~ ( J , S).
(It is l e f t t o the reader t o verify t h a t ~ and ~ are J - e q u i v a r i a n t R - a l g e b r a h o m o m o r p h i s m s . ) Let c t ( y ) = y ( - ) ( e s ) for y in t h e l e f t hand side, i.e. ct(y)(j) = y ( j ) ( e s )
for j ~ J . Let ~(z)(j)(h) = z(~b(h)j) for z in the r i g h t hand side, h~H, j e J .
We check ~ is w e l l - d e f i n e d , i.e. ~(y)e Map~b~(J,S): Let j ~ J , geG. W e calculate:
txty)(@r(g).j)
=
y(~Im(g).j)te~)
=
(~(g)*y(j))(e
n)
= y(j)(enn(g) )
= g(y(j)(en))
(since y ~ M a p ~ . . . )
(def. of H - a c t i o n on Mapn(H,S))
(since y ( j ) ~ M a p x . . . )
www.pdfgrip.com
10
chap. 0
=
g (cx{y)(j)), q.e.d.
B0t is t h e i d e n t i t y : L e t y e Mapcv(J, M a p n ( H . S ) ) .
jeJ,
h ~ H . T h e n ([3~(y))(j)(h) =
0t(y)(~(h)j) = y(d2(h)j)(e H ) = ( h * y ( j ) ) ( e H ) ( s i n c e y e Map~b...), a n d t h e l a s t e x p r e s s i o n
e q u a l s y ( j ) ( h ) , q.e.d.
0t~ is t h e
identity: Let z e Map~b~(J,S), jeJ.
Then
(0t~(zl)(j) -- ~ ( z } ( j ) ( e H) --
z(d/(e u )j) = z ( j ) , q.e.d. This c o m p l e t e s t h e p r o o f o f (i).
(ii): W e w i l l give o n e a r g u m e n t f o r t h e g e n e r a l c a s e , a n d a n o t h e r f o r t h e s p e c i a l c a s e t h a t H is a b e l i a n .
N o t e f i r s t t h a t ~* c o m m u t e s w i t h f a i t h f u l l y f l a t b a s e c h a n g e , i.e. f o r any f a i t h f u l l y f l a t R - a l g e b r a T a n d any S in G A L ( R , G ) , t h e r e is a c a n o n i c a l H - e q u i v a r i a n t
i s o m o r p h i s m z * ( T ® S) - T~:~*S. By f a i t h f u l l y f l a t d e s c e n t , it t h u s s u f f i c e s t o f i n d
such a T with ~*(T®S)
a n H - G a l o i s e x t e n s i o n o f T. T a k i n g T = S a n d c h a n g i n g
n o t a t i o n , w e a r e r e d u c e d t o p r o v i n g : ~* o f t h e
trivial G-extension
R (~) is a n
H - G a l o i s e x t e n s i o n o f R. Let t: {e} -~ G, t': {e} -* H be t h e o b v i o u s m a p s . O n e
c h e c k s q u i t e e a s i l y : t*R is t h e t r i v i a l G - e x t e n s i o n R ¢~). Since ~L = t', w e o b t a i n :
7t*(R I~)) -, 7t*t*R
" (t'l*R
( b y (i))
R (H),
a n d w e a l r e a d y k n o w t h a t t h i s is i n d e e d an H - G a l o i s e x t e n s i o n , q.e.d.
The f o l l o w i n g nice a r g u m e n t f o r H a b e l i a n is d u e t o H a r r i s o n . W e f a c t o r z as
= ~y, w i t h y =
(idG,eH): G--> G x H , a n d ~ - - ( ~ , i d x ) : G × H --> H. T h e n y is a s p l i t
m o n o m o r p h i s m , a n d ~ is o n t o . I t is s u f f i c i e n t t o s h o w (ii) f o r % a n d f o r g, t a k i n g
i n t o a c c o u n t (i). F o r ~ -- % o n e s e e s d i r e c t l y t h a t z * S ,, S® R R Cn). w i t h t h e o b v i o u s
a c t i o n o f G × H , a n d o n e c a n c h e c k t h a t t h i s is a G × H - G a l o i s
e x t e n s i o n . F o r ~ ---- 5,
i.e. ~ o n t o , o n e c a l c u l a t e s f r o m t h e d e f i n i t i o n t h a t 5"S ---- S Ker(~), w h i c h is i n d e e d
a G a l o i s e x t e n s i o n w i t h g r o u p Im(6) by Thin. 2.2.
We now present Harrison's construction
w h i c h m a k e s t h e s e t H ( R , G ) i n t o an
a b e l i a n g r o u p if G is a f i n i t e abelian g r o u p . This w i l l t h e n b e c a l l e d t h e H a r r i s o n
g r o u p o f R a n d G. ( R e c a l l t h a t H ( R , G ) = GAL(R,G)/~,,). W e u s e w i t h o u t f u r t h e r
c o m m e n t t h e f o l l o w i n g e a s y f a c t : I f S, T ~ G A L ( R , G ) , t h e n S® R T w i t h t h e n a t u r a l
a c t i o n o f G x G , is a G x G - G a l o i s e x t e n s i o n o f R. L e t G b e f i n i t e a b e l i a n , t: {e} -~ G
b e t h e i n c l u s i o n o f t h e t r i v i a l g r o u p in G, ~: G×G ~ G t h e m u l t i p l i c a t i o n Ca h o m o m o r p h i s m ! ) , a n d j : G -> G t h e m a p g ~
I~flm~o~.
g-I (again, a homomorphism).
The H a r r i s o n p r o d u c t S . T o f S, T c GAL{R,G) is d e f i n e d t o b e
S'T
=
t~*(S®RT} e G A L ( R , G ) .
By f u n c t o r l a l i t y , t h e H a r r i s o n p r o d u c t [S.T] o f t w o i s o m o r p h i s m c l a s s e s [ S ] , [ T ]
H ( R , G ) is a w e l l - d e f i n e d e l e m e n t o f H ( R , G ) . W e s h a l l o f t e n a b u s e n o t a t i o n a n d
write S e H(R,G) etc.
www.pdfgrip.com
§3
11
39.
[ H a r r i s o n (1965)] a) With this definition, H(R,G) becomes an abelian
group whose neutral element is (the class of) the trivial extension R(C)/R.
b) I f x: G ~ H is a homomorphism f r o m G to another abelian group H, then
n*: H(R,G) ---, H ( R , H ) is a group homomorphism.
Proof. a) This is a r a t h e r f o r m a l a r g u m e n t e x p l o i t i n g t h e f u n c t o r i a l i t y p r o p e r t i e s .
Let us b e g i n b y s h o w i n g a s s o c i a t i v i t y o f t h e H a r r i s o n p r o d u c t . Let S, T, U e H(R,G).
Then:
(S'T)'U
=
~t*(~t*(S®,T) o R U)
=
tl*((tl*®id~*)(S®To U)
=
(lz(vxid))*(SoToU)
(3.1. b))
=
( v ( i d × p ) ) * ( S o T o U)
(this is j u s t t h e a s s o c i a t i v i t y o f G)
=
S'(T.U)
(same calculation backwards).
In t h e s a m e m a n n e r , one p r o v e s c o m m u t a t i v i t y : S.T = p*(S® T) = (~tx)*(S® T) ( w h e r e
x: G × G -~ G x G is t h e i n t e r c h a n g e i s o m o r p h i s m ; ~ = t~x since G is c o m m u t a t i v e ) .
N o w (VT)*(S®T) - p*x*(S®T), a n d x * ( S o T )
- T ® S by a d i r e c t a r g u m e n t . This
finally gives S.T =, T.S.
To see t h a t E = fl
Galois e x t e n s i o n o f R w i t h g r o u p {e}. F o r any S ~ H(R,G), w e t h e n get:
S'E
=
tl*(Soat*R)
-
tl*(idGxt)*(So~R)
=, i d G * ( S ® a R )
(since tl(idaxt) = idG)
-
(direct argument).
S
Finally, we use j t o c o n s t r u c t an inverse o f S e H(R,G). W e need a s m a l l auxiliary f o r m u l a , t o wit: S ® S (ms a G × G - G a l o i s e x t e n s i o n ) is i s o m o r p h i c t o A ' S ,
w h e r e A: G -, G × G is t h e d i a g o n a l e m b e d d i n g . E P r o o f o f t h e l a t t e r f o r m u l a : T h e r e
is an i s o m o r p h i s m cz: Map(G, S)
, MapA(GxG, S) w h i c h m a p s (f: G -- S) t o
((g,h) v---, g ( f ( g - t h ) ) ). F u r t h e r m o r e , MapA(GxG, S) is j u s t A*S. On t h e o t h e r hand,
t h e r e is t h e c a n o n i c a l i s o m o r p h i s m h: S® S ~
Map(G,S) f r o m t h e d e f i n i t i o n o f
G - G a l o l s e x t e n s i o n . O n e t h e n c h e c k s t h a t t h e c o m p o s i t e ~h is G x G - e q u i v a r i a n t . ]
N o w we c l a i m t h a t j * S gives an inverse t o S in t h e H a r r i s o n group. W e c a l c u l a t e :
S'o*S
=
t.t*(Soo*S)
= ~t*((ida*oj*)(SoS))
=, ~t*(idGxj )*A*(S )
"
(t~(ldxj)A)*(S)
-
(t~)*(S)
=
t*(E*(S))
-
t*(S ~) =
w i t h E: G -~ {e} t h e o b v i o u s m a p
t*R = R
The p r o o f o f b) is quite similar, and h e n c e o m i t t e d .
www.pdfgrip.com
12
chap. 0
By Thm. 3.1 a n d 3.2, w e have, f o r a n y c o m m u t a t i v e r i n g , a f u n c t o r H(R,--) f r o m t h e
c a t e g o r y o f f i n i t e a b e l i a n g r o u p s t o t h e c a t e g o r y o f a b e l i a n g r o u p s . The m o s t i m p o r t a n t g e n e r a l p r o p e r t y o f t h i s f u n c t o r is t h e f o l l o w i n g :
~ m
3.3. The f u n c t o r H(R,--) is left exact, i.e.: 0 --> J ~ G ~ G' --> 0 is a short
exact sequence o f f i n i t e abelian groups, then the induced sequence
0
~
H(R,J)
~
H(R,G)
-~
H(R,G')
is exact.
Remark. H ( R , - ) is u s u a l l y n o t r i g h t e x a c t ; o n e c a n e s t a b l i s h a r e l a t i o n b e t w e e n t h e
obstruction to right-exactness
and certain Brauer groups. We shall not pursue this.
Proof o f 3.3. Since ~bi is t h e z e r o m a p , (kbi)* h a s a l s o t o b e t h e z e r o m a p . H e n c e
~*i* = 0. F o r t h e o t h e r p a r t s o f t h e p r o o f , w e n e e d a l e m m a .
L e m m n 3.4. S e G A L ( R , G ) is trivial i f f there exists an R-algebra homomorphism
S ~ R. (Such an e is called an a u g m e n t a t i o n . )
Proof o f L e m m a 3.4. The t r i v i a l e x t e n s i o n R ~ ) o b v i o u s l y h a s a u g m e n t a t i o n s , n a m e l y ,
t h e c a n o n i c a l p r o j e c t i o n s t o R. S u p p o s e on t h e o t h e r h a n d t h a t E: S -~ R is an
augmentation.
Define an R - a l g e b r a
homomorphism(!)
@: S -* R t~l b y 9(Y) =
(e(oy))ae G. I t is e a s y t o c h e c k t h a t ~0 is a l s o G - e q u i v a r i a n t , h e n c e an i s o m o r p h i s m
by 1.12.
W e c o n t i n u e in t h e p r o o f o f Thm. 3.3. S u p p o s e S e H ( R , G ) w i t h i*S t r i v i a l .
Then, by t h e l e m m a , i*S h a s a n a u g m e n t a t i o n E i n t o R. R e c a l l t h a t i*S--- MaPi(G, S).
We can construct
ct: S ~ i*S b y l e t t i n g , f o r y • S,
an R-algebra homomorphism
a n d ~ e G: u(y)(o) ---- c(y} if o e I m ( i ) , a n d ~ ( y ) ---- 0 o t h e r w i s e . H e n c e S i t s e l f h a s
an a u g m e n t a t i o n e~, a n d h e n c e is t r i v i a l , b y t h e l e m m a .
To c o n c l u d e t h e p r o o f , w e s u p p o s e T e H ( R , G ) s u c h t h a t kb*T ( - T Ker(~b)) is
t r i v i a l , i.e. ~*T ,, R ~6'~. R e c a l l R (~'~ ** ~ c ' ~ G '
fG ''R' w h e r e {fG,} is t h e c a n o n i c a l
b a s i s m a d e u p o f i d e m p o t e n t s . I d e n t i f y T ker(kb) w i t h R ~') a n d c o n s i d e r t h e R - a l g e b r a A = T.fe, ( w h e r e e ' is t h e n e u t r a l e l e m e n t o f G'}. N o w o n e c h e c k s , b y r e d u c t i o n
t o t h e c a s e T --- R (~) ( f a i t h f u l l y f l a t d e s c e n t ) , t h a t A is c a n o n i c a l l y a J - G a l o i s
e x t e n s i o n o f R. ( N o t e J ,, K e r ( ~ ) . ) W e d e f i n e an R - a l g e b r a
T--, i~A b y
homomorphism
6:
~(y)(o) = o(y}.fe, (y e T, o e G).
To s e e t h a t t h i s is w e l l - d e f i n e d , o n e h a s t o v e r i f y t h a t ~(y) is i n d e e d in MaPi(G,A).
F o r ~ e J w e have ~(y)(i(~).o) = (i(x)o)(y).fe, = z ( 0 ( y ) - f e , ) ( s i n c e r e ' is f i x e d b y ~),
a n d t h e l a s t e x p r e s s i o n is x ( ~ ( y ) ( o ) ) . F u r t h e r m o r e , B is G - e q u i v a r i a n t . A g a i n b y 1.12,
is an i s o m o r p h i s m , a n d T is in t h e i m a g e o f i*, q.e.d.
This t h e o r e m h a s an i m p o r t a n t c o n s e q u e n c e :
www.pdfgrip.com
§3
13
3.~. Given a commutative ring R, there exists a pro finite abelian group D R
such that the functor H(R,--): {finite abelian groups} ~
{abelian groups} is prorepresented by fiR' i.e. naturally isomorphic to Homcont(tqR,--).
Proof. Every left exact f u n c t o r f r o m finite abelian g r o u p s t o abelian g r o u p s is
p r o - r e p r e s e n t a b l e . For details, see Harrison (1965), p r o o f o f Thm. 4.
i l a m ~ l m , a) The p r o o f gives at the same time the uniqueness o f fl R. O f t e n tqR is
called the abelian fundamental group o f R, or the abelianized absolute Galois group
o f R. Explicitly one has fl R = p r o j . l i m ( H ( R , Z / n Z ) V ) , where the g r o u p s Z / n Z form
an inductive s y s t e m indexed by the divisibility lattice o f ~q, and v means Pontryagin
dual. See Harrison, loc.ctt.
b) By the m e t h o d s o f the p r o o f o f 3.2, one can see w i t h o u t difficulty: if [k]:
G -, G is the h o m o m o r p h i s m g e---, gk (G finite abelian), then [k]*: H{R,G) -,
H(R,G) is multiplication by k in the Harrison group. In particular, H(R,G) is annihilated by the e x p o n e n t o f G, hence torsion. Therefore the Pontryagin dual in a) is
indeed profinite.
We w a n t t o show t h a t the g r o u p D R has in many cases an interpretation as a
(profinite) g r o u p o f a u t o m o r p h i s m s o f an appropriate (infinite) extension o f R.
If R - - K is a field, the required g r o u p is A u t ( K a b / K ) , where K ab is the maximal
abelian Galois extension o f K. More generally, Janusz (1965) has proved the existence o f a separable closure for every c o n n e c t e d ring R. This is by definition a c o n nected R - a l g e b r a R sep which is a filtered union o f G-Galois e x t e n s i o n s o f R
(G varies, o f course), such t h a t every c o n n e c t e d Galois e x t e n s i o n S / R is e m b e d dable in R sep. There is no ambiguity here as to what the Galois group o f S / R is,
because o f the following r e s u l t (see C h a s e - H a r r i s o n - R o s e n b e r g (1955), Cot. 3.3
or this chapter, 7.3}: If S / R
is a G-Galois e x t e n s i o n o f c o n n e c t e d rings, then
A u t ( S / R ) = G. As proved by Janusz (1966), the g r o u p ~/R = Aut(RS~P/R) is a filtered
projective limit o f finite g r o u p s {more precisely: o f Galois g r o u p s o f Galois e x t e n sions contained in RssP), hence T R is profinite. (For a n o t h e r exposition o f this
material, see also D e M e y e r - l n g r a h a m (1971).)
Our next objective is the following result.
3.6. Let R be connected, and T R = Aut(RSeP/R) as in the preceding discussion. Then there is a natural isomorphism
~: Hom.0nt(5*R,--}
-~ H(R,--)
o f functors f r o m finite abelian groups to abelian groups.
We need a few preparations for the proof.
www.pdfgrip.com
14
chap. 0
L e m m a 3.7. Let R be connected, S/R, T/R be two Galois extensions (with maybe different g r o u p s ) , and f: S - - ~ T an R - a l g e b r a h o m o m o r p h i s m . T h e n Ker(f) is g e n e r a ted by an idempotent.
P r o o f . I t is w e l l k n o w n t h a t an i d e a l I o f S is g e n e r a t e d b y a n i d e m p o t e n t i f f l is
f i n i t e l y g e n e r a t e d a n d I z = I. [ O n e d i r e c t i o n is c l e a r . I f I is f i n i t e l y g e n e r a t e d a n d
I.I = I, t h e n b y B o u r b a k i , A l g . c o m m . , II §2 n o 2 c o r . 3, t h e r e e x i s t s e e I s u c h t h a t
( 1 - e ) l = O. I t f o l l o w s e a s i l y t h a t e z = e a n d I = e S . ~ B o t h o f t h e s e p r o p e r t i e s o f
I may be tested by a faithfully flat base extensions,
hence we may, and shall,
a s s u m e t h a t b o t h S a n d T a r e t r i v i a l , i.e. a f i n i t e p r o d u c t o f c o p i e s o f R, c o n s i d e r e d j u s t a s R - a l g e b r a s . H e r e t h e d e s i r e d p r o p e r t y o f K e r ( f ) is e a s i l y o b t a i n e d b y
explicit calculations with canonical idempotents.
RemRrk. I n t h e p r o o f , w e o n l y u s e d t h a t S a n d T b e c o m e i s o m o r p h i c t o a p r o d u c t
of copies of the ground ring after suitable faithfully flat base change.
Fropomltion 3.8.
[ H a r r i s o n (1965)] Let R be c o n n e c t e d , S / R a G-Galois e x t e n s i o n with
f i n i t e abelian g r o u p G. Then there e x i s t s a s u b g r o u p H C G and a c o n n e c t e d H - G a l o i s
e x t e n s i o n U / R such that S - i*U (where i: H -* G is the inclusion).
P r o o f . Since R is c o n n e c t e d , e v e r y f i n i t e l y g e n e r a t e d p r o j e c t i v e R - m o d u l e
has a
w e l l - d e f i n e d r a n k (~ ~q). F r o m t h i s it f o l l o w s t h a t t h e R - a l g e b r a S c a n b e d e c o m posed as a product of finitely (at most rank(S)) algebras without proper idempot e n t s , i.e. t h e r e a r e i r r e d u c i b l e o r t h o g o n a l i d e m p o t e n t s
e 1..... e n in S w h o s e s u m
is 1, t h e s e t M o f i r r e d u c i b l e i d e m p o t e n t s e q u a l s {e I ..... en}, a n d S = ~):=ln e l S , w h e r e
all e~S are c o n n e c t e d .
G o p e r a t e s o n M. Since t h e s u m o v e r a n y G - o r b i t o n M is G - i n v a r i a n t , h e n c e
an i d e m p o t e n t o f R, t h e o p e r a t i o n o f G o n M m u s t b e t r a n s i t i v e . Pick e I e M, a n d
l e t H b e t h e S t a b i l i z e r o f e I in G. Since G is a b e l i a n , H is t h e s t a b i l i z e r o f e v e r y
e e M. L e t U = e l S . By t r a n s i t i v i t y o f G o n M , a l l e S (e ~ M ) are i s o m o r p h i c t o U
a s R - a l g e b r a s , s o S - U ~M> ( n o n c a n o n i c a l l y ) , U is c o n n e c t e d , a n d H a c t s o n U b y
R-automorphisms.
W e n o w c l a i m t h a t U / R is H - G a l o i s .
F i r s t o f a l l , H e m b e d s i n t o A u t ( U ) . ( I f 0 e l l is i d e n t i t y o n U = e t S , o n e s e e s ,
a g a i n s i n c e G is t r a n s i t i v e o n M, t h a t o is i d e n t i t y o n a l l e S (e ~ M ) , h e n c e o ---- id.)
Next, G/H operates transitively and without fixed points on M, whence [G:H] =
JMI. F r o m t h e d e f i n i t i o n o f G a l o i s e x t e n s i o n , o n e h a s r a n k a ( S ® S) = r a n k R ( S ) - [ G t ,
h e n c e r a n k R ( S ) = fGt. T h e r e f o r e r a n k a ( U ) = IHt ( u s e S • U~M)). T h u s w e k n o w
t h a t U [ H ] a n d E n d R ( U ) a r e f i n i t e l y g e n e r a t e d p r o j e c t i v e o f t h e s a m e r a n k o v e r R,
a n d it s u f f i c e s t o s h o w t h a t t h e m a p j : U [ H ] - ~
E n d R ( U ) (cf. Thin. 1.6) is onto.
U is e m b e d d e d in E n d ~ ( U ) via l e f t m u l t i p l i c a t i o n s . W i t h t h i s i d e n t i f i c a t i o n , o n e h a s
the following formulas
in E n d s ( U ) :
not in H. Let ~0 e E n d s ( U ) .
Then
el.o.e I -----el.o ----o.e I for o • H , eloe i = 0 for o
ei.~o.eI e Ends(S);
www.pdfgrip.com
by 1.6 (iii),there are s o • $
§3
t5
w i t h ~.oeGSa'O = el.~.e r M u l t i p l y i n g t h i s e q u a t i o n w i t h e I f r o m b o t h s i d e s , w e
o b t a i n b y t h e a b o v e r e m a r k s : ~'o•H (eisa)'°'et = el"~'er I f w e r e s t r i c t b o t h s i d e s t o
U, w e g e t t h e e q u a t i o n ~.o•H(eisG).o ---- q~ in E n d R ( U ) , h e n c e j is o n t o .
It r e m a i n s t o s h o w S = i*U. T h i s is d o n e b y t h e u s u a l m e t h o d : D e f i n e a m a p
~: S - - * i*U by [3(s)(o) = e i o ( s ) . E x a c t l y a s in t h e p r o o f o f 3.3 o n e s e e s t h a t ~ is a
G-equivariant R-algebra homomorphism,
h e n c e a n i s o m o r p h i s m by 1.12.
Q.E.D.
R e m a r k . I f R = K is a f i e l d , t h e n o n e c a n s h o w t h a t t h e c o n n e c t e d H - e x t e n s i o n
U
is a l s o a f i e l d . U is c a l l e d t h e " K e r n k S r p e r " ( c o r e f i e l d ) o f S / K in H a s s e (1949).
Proof o f 3.6. W e d e f i n e f o r e a c h f i n i t e a b e l i a n g r o u p G a m a p v~ : H o m c o ~ t ( T R , G )
- - - H ( R , G). R e c a l l R s~p is a s e p a r a b l e c l o s u r e o f R. F o r a n y c o n t i n u o u s h o m o m o r p h i s m f: Ta = A u t ( R ~ P / R )
v~(f)
•
G, w e d e f i n e
= f e~(E) • H ( R , G ) ,
w h e r e E is a n y a b e l i a n G a l o i s e x t e n s i o n o f R, c o n t a i n e d in R s~p, s u c h t h a t f f a c t o r s t h r o u g h a h o m o m o r p h i s m f ~ : A u t ( E / R ) --* G. ( T h e e x i s t e n c e o f s u c h an E
f o l l o w s , s i n c e f is c o n t i n u o u s , a n d G is a b e l i a n . ) O f c o u r s e w e m u s t s h o w t h a t t h i s
is i n d e p e n d e n t o f t h e c h o i c e o f E: if E ' is a n o t h e r , w. I. o. g. E c E ' c R ~ p , t h e n
b y t h e M a i n T h e o r e m (§2), t h e G a l o i s g r o u p o f E ' m a p s o n t o t h e G a l o i s g r o u p o f
E ( c a l l t h i s e p i m o r p h i s m ~ ) , a n d E is t h e f i x e d f i e l d o f K e r ( ~ ) in E ' . F r o m f E ' =
f ~ n a n d E = ~ * E ' w e g e t fE,*E' = fE*E.
N o w w e p r o v e t h a t va p r e s e r v e s s u m s . L e t us w r i t e G a d d i t i v e l y f o r t h i s . L e t
f, g e Hom o,t(TR,G), and let • denote the Harrison product. We obtain:
va(f) ' v~(g)
=
f E * E • gE*E
(E c R sev G a l o i s / R , l a r g e e n o u g h )
= ~ * ( f e * E ®~ g e * E )
=
(~*(feìgE)*A*)(E)
=
(fe+gE)*E"
(def. of ã )
(A*E =
Eđ E, cf. p r o o f o f 3,2)
t h e l a s t s t e p b e i n g j u s t i f i e d b e c a u s e ~ (fE xgE ) A c o i n c i d e s w i t h f E + gE"
The p r o o f o f t h e n a t u r a l i t y o f v¢ in G is s i m i l a r ( a n d e a s i e r ) , a n d w e o m i t it.
W e s h o w v¢ is i n j e c t i v e : S u p p o s e f * E is t h e t r i v i a l G - e x t e n s i o n
( w h e r e f is in
H o m ( A u t ( E / R ) , G ) , E / R a b e l i a n c o n n e c t e d G a l o i s e x t e n s i o n ) . W e c a n f a c t o r f in
t h e f o r m i~b, w i t h ~b s u r j e c t i v e a n d i i n j e c t i v e . By 3.3, a l r e a d y ~b*E is t r i v i a l , i.e.
E K e r ( ~ ) is a p r o d u c t o f c o p i e s o f R, a s an R - a l g e b r a , b u t a l s o c o n n e c t e d
(since
E is). T h e r e f o r e w e m u s t have E K e r ( ~ ) = R, a n d f o r r e a s o n s o f r a n k : C o k e r ( ~ ) is
t r i v i a l . H e n c e f is t h e z e r o h o m o m o r p h i s m .
v¢ is s u r j e c t i v e : S u p p o s e w e a r e g i v e n a G - G a l o i s e x t e n s i o n S / R . I f S is c o n n e c t e d , t h e n w e m a y a s s u m e S c R sep, a n d t h e r e is a n a t u r a l c o n t i n u o u s e p i m o r -
www.pdfgrip.com
16
chap. 0
p h i s m f : tit a ~ A u t ( S / R ) = G. Taking E = S, we get the identity for f ~ , hence
v a ( f ) = S. This was the e a s y case. The p r o b l e m arises when S is not c o n n e c t e d .
But then, t h a n k s t o 3.8, we find an inclusion i: H c G o f a s u b g r o u p H and a
c o n n e c t e d H - G a l o i s e x t e n s i o n U / R w i t h i*U - S. By n a t u r a l i t y o f v, it t h e n s u f fices to find a preimage o f U under u s , but this we can do since U is c o n n e c t e d .
Q.E.D.
C a r o i l m 7 3.9. F o r any c o n n e c t e d ( c o m m u t a t i v e )
ring R, the abelian f u n d a m e n t a l
g r o u p fl R is isomorphic to the abelianization Tn/[TR,TR].
P r o o f . By Thm. 3.6, the profinite g r o u p TR/[qrR,qr ~] p r o - r e p r e s e n t s the f u n c t o r
H(R,--). The g r o u p f i r p r o - r e p r e s e n t s this f u n c t o r by definition. It is w e l l - k n o w n
f r o m c a t e g o r y theory t h a t a p r o - r e p r e s e n t i n g object o f a given f u n c t o r is unique
up to i s o m o r p h i s m .
At the end o f this section, we give s o m e r e s u l t s which show how the f u n c t o rialities o f the t w o a r g u m e n t s in H(R,G) interact.
l~aoalUoa
3.IO. Let f : R ~ T b e a h o m o m o r p h i s m o f ( c o m m u t a t i v e ) rings, and n:
G ~ H a h o m o m o r p h i s m o f f i n i t e g r o u p s . T h e n the diagram
H(R,G)
,
To-- I
H(T,G)
H(R,H)
t
,
T®--
H(T,H)
is c o m m u t a t i v e .
P r o o f . If S is f l a t over R, the p r o p o s i t i o n f o l l o w s directly f r o m the definitions.
The reader will p r o b a b l y n o t e t h a t we used the r e s u l t (for S / R faithfully flat) in
the p r o o f o f Thm. 3.1 already,
For the general case, one exhibits for S c H(R,G) a canonical map
O~s/l~: T®Rrc*S
,
n*(T®RS);
one c h e c k s t h a t the definition o f ~ is c o m p a t i b l e with f a i t h f u l l y f l a t b a s e change,
which r e d u c e s the p r o o f to the case where S is a trivial G - e x t e n s i o n . This case can
easily be done directly.
C o r o l l a r y 3.11. I f R, S, G are as in 3.10, and G is abelian, then the m a p T ® R--:
H(R,G) ~ H ( S , G ) is a g r o u p hornomorphism.
P r o o f . The H a r r i s o n p r o d u c t was defined w i t h the help o f tl* (~: GìG --" G the
multiplication map.) By 3.10, the map Tđ R- c o m m u t e s with ~*. From this the claim
f o l l o w s easily.
www.pdfgrip.com