Tải bản đầy đủ (.pdf) (1,019 trang)

Perovskites and related mixed oxides

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (19.73 MB, 1,019 trang )

Edited by Pascal Granger, Vasile I. Parvulescu,
Serge Kaliaguine, and Wilfrid Prellier

Perovskites and
Related Mixed Oxides
Concepts and Applications


www.pdfgrip.com


Edited by

Pascal Granger,

Vasile I. Parvulescu,

Serge Kaliaguine,

and Wilfrid Prellier

Perovskites and Related
Mixed Oxides

www.pdfgrip.com


Related Titles
Ladewig, B., Jiang, S.P., Yan, Y. (eds.)

Raveau, B., Seikh, M.



Materials for Low-Temperature
Fuel Cells

Cobalt Oxides

2015

2012

Print ISBN: 978-3-527-33042-3; also available in
electronic formats

Print ISBN: 978-3-527-33147-5; also available in
electronic formats

Levitin, V.

Pacchioni, G., Valeri, S. (eds.)

Interatomic Bonding in Solids

Oxide Ultrathin Films

Fundamentals, Simulation, and Applications

Science and Technology

2014


2012

Print ISBN: 978-3-527-33507-7; also available in
electronic formats

Print ISBN: 978-3-527-33016-4; also available in
electronic formats

Ogale, S.B., Venkatesan, T.V., Blamire, M. (eds.)

Duò, L., Finazzi, M., Ciccacci, F. (eds.)

Functional Metal Oxides

Magnetic Properties
of Antiferromagnetic
Oxide Materials

New Science and Novel Applications
2013

Print ISBN: 978-3-527-33179-6; also available in
electronic formats

From Crystal Chemistry to Physics

Surfaces, Interfaces, and Thin Films
2010

Jiang, S.P., Yan, Y. (eds.)


Print ISBN: 978-3-527-40881-8; also available in
electronic formats

Materials for HighTemperature Fuel Cells

Bruce, D.W., O’Hare, D., Walton, R.I. (eds.)

Functional Oxides

2013

Print ISBN: 978-3-527-33041-6; also available in
electronic formats

2010

Print ISBN: 978-0-470-99750-5; also available in
electronic formats

Altomare, F., Chang, A.M.
Kumar, C.S. (ed.)

One-Dimensional
Superconductivity in Nanowires

Nanostructured Oxides

2013


2009

Print ISBN: 978-3-527-40995-2; also available in
electronic formats

Print ISBN: 978-3-527-32152-0; also available in
electronic formats

Bezryadin, A.

Superconductivity in Nanowires
Fabrication and Quantum Transport
2012

Print ISBN: 978-3-527-40832-0; also available in
electronic formats

www.pdfgrip.com


Edited by Pascal Granger, Vasile I. Parvulescu,
Serge Kaliaguine, and Wilfrid Prellier

Perovskites and Related Mixed Oxides
Concepts and Applications

www.pdfgrip.com


Editors

Prof. Pascal Granger

Université Lille
Unité de Catalyse et de Chimie du Solide
Bâtiment C3
59655 Villeneuve d’Ascq Cedex
France
Prof. Dr. Vasile I. Parvulescu

Prof. Serge Kaliaguine

Laval University
Department of Chemical Engineering
1065, Avenue de la médecine
Quebec City, QC G1V 0A6
Canada

Université de Caen
Laboratoire CRISMAT
6, bvd Maréchal Juin
14050 Caen
France

Library of Congress Card No.: applied for
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the
British Library.

University of Bucharest
Faculty of Chemistry

Regina Elisabetha Bld. 4-12
030016 Bucharest
Romania

Dr. Wilfrid Prellier

All books published by Wiley-VCH are carefully
produced. Nevertheless, authors, editors, and
publisher do not warrant the information contained
in these books, including this book, to be free of
errors. Readers are advised to keep in mind that
statements, data, illustrations, procedural details
or other items may inadvertently be inaccurate.

Bibliographic information published by the
Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this
publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the
Internet at <>.
 2016 Wiley-VCH Verlag GmbH & Co. KGaA,
Boschstr. 12, 69469 Weinheim, Germany
All rights reserved (including those of translation into
other languages). No part of this book may be repro­
duced in any form – by photoprinting, microfilm, or
any other means – nor transmitted or translated into
a machine language without written permission from
the publishers. Registered names, trademarks, etc.
used in this book, even when not specifically marked
as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-33763-7
ePDF ISBN: 978-3-527-68659-9
ePub ISBN: 978-3-527-68661-2
Mobi ISBN: 978-3-527-68662-9
oBook ISBN: 978-3-527-68660-5
Typesetting Thomson Digital, Noida, India
Printed on acid-free paper

www.pdfgrip.com


V

Contents
List of Contributors
Preface XXXV


XXIII


Volume 1

Part One Rational Design and Related Physical Properties 1

1

From Solid-State Chemistry to Soft Chemistry Routes
Vicente Rives


1.1
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.2.7
1.2.8
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.3.4.1
1.3.4.2
1.3.5
1.3.6

3


Introduction 3

Processes Involving Solids 4

The Ceramic Method 4

Microwave Synthesis 5


Self-Propagating High-Temperature Synthesis (SHS) 6

The Precursor Method 6

Hydrothermal Synthesis 7

High-Pressure Methods 8

Mechanochemistry 8

Other Methods Starting from Solids 9

Processes Involving Liquids 9

Flux Method 9

Molten Salt Electrolysis 10

Sol–Gel 10

Spray Drying (SD) and Related Methods 13

Freeze-Drying 14

Spray–Freeze-Drying 14

Molecular Self-Assembling 14

Other Methods Starting from Liquid Reactants


or Solutions 15

1.3.6.1 Ionic Liquids 15

1.3.6.2 The Gel Combustion Method 15

1.3.6.3 Sonication 15


www.pdfgrip.com


VI

Contents

1.3.6.4
1.4
1.4.1
1.4.2
1.5
1.6
1.7
1.8

Reverse Microemulsion 15

Processes Involving Gases or Vapors 16


Gas Flame Combustion 16

Chemical Vapor Deposition (CVD) 16

Single Crystals 16

Nanoparticles 18

Films 19

Conclusions 19

References 20


2

Mechanochemistry 25

Houshang Alamdari and Sébastien Royer

2.1
2.2
2.3
2.4
2.5
2.5.1
2.5.2
2.5.3
2.5.4

2.6
2.6.1

Introduction 25

Historical Development 25

Terminology 28

Mechanosynthesis Process 29

Milling Facilities
32
Spex Mills 32

Planetary Mills
34
Attrition Mills
35
Zoz Mills 36

Mechanosynthesis of Perovskites 37

Looking for an Alternative Route to Synthesize

New Compositions 38

Lowering Sintering Temperature 38

Reducing Crystallite Size and Modifying Particle


Morphology 39

Increasing Specific Surface Area 40

Concluding Remarks 42

References 43


2.6.2
2.6.3
2.6.4
2.7

3

Synthesis and Catalytic Applications of Nanocast

Oxide-Type Perovskites 47

Mahesh Muraleedharan Nair and Serge Kaliaguine

3.1
3.2
3.3
3.4
3.5
3.6
3.6.1

3.6.2
3.6.3
3.6.4
3.6.5

Introduction 47

Perovskite Structure 48

Evolution of Perovskite Synthesis 49

General Principles of Nanocasting 51

Nanocasting of Perovskites 52

Catalytic Studies 56

Total Oxidation of Methane 56

Reduction of NO to N2 57

Chemical Looping Combustion 58

Total Oxidation of Methanol 59

Dry Reforming of Methane 60


www.pdfgrip.com



Contents

3.7

Conclusions and Perspectives 63

References 64


4

Aerosol Spray Synthesis of Powder Perovskite-Type Oxides 69

Davide Ferri, Andre Heel, and Dariusz Burnat

4.1
4.2
4.2.1
4.2.2
4.3
4.4
4.4.1
4.4.2

Introduction 69

Flame Spray Synthesis 71

Methane Flame 72


Acetylene Flame 75

Flame Hydrolysis 80

Ultrasonic Spray Synthesis 82

General Particle Properties 83

Citric Acid Assisted Synthesis 85

References 87


5

Application of Microwave and Ultrasound Irradiation in

the Synthesis of Perovskite-Type Oxides ABO3 91

Juan C. Colmenares, Agnieszka Magdziarz, and Paweł Lisowski

5.1
5.2
5.2.1
5.2.2

Introduction 91

Microwave Methodology 92


Basic Concepts of Microwave Chemistry 92

Microwave Heating in Combination with Traditional

Synthesis Methods 93

5.2.2.1 Microwave-Assisted Hydrothermal Method (HTMW) 93

5.2.2.2 Other Microwave-Assisted Methods 100

5.3
Ultrasound Methodology 101

5.3.1 Basic Concepts of Ultrasound Chemistry 101

5.3.2 Ultrasound-Assisted Coprecipitation Method 102

5.3.3 Ultrasound-Assisted Sol–Gel Method 103

5.3.4 Ultrasound Spray Pyrolysis 105

5.3.5 Other Ultrasound-Assisted Methods 107

5.4
Concluding Remarks and Outlook 108

Acknowledgments 108

References 109


6

Three-Dimensionally Ordered Macroporous (3DOM)

Perovskite Mixed Metal Oxides 113

Masahiro Sadakane and Wataru Ueda

6.1
6.2
6.2.1
6.2.1.1
6.2.1.2
6.2.1.3
6.2.2

Introduction 113

3DOM Materials 114

Preparation of 3DOM Materials 114

Colloidal Crystal Templates 114

Infiltration of Precursors in the Voids of Templates 122

Removal of Templates 122

Structure of 3DOM Materials (Inverse Opal Structures) 122



www.pdfgrip.com

VII


VIII

Contents

6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.4.1
6.3.4.2
6.3.4.3
6.3.4.4
6.4

7

Preparation of 3DOM Perovskite Mixed

Metal Oxides 123

Precursor Solution 123


Selection of Sphere Templates 126

Synthesis Methods and Applications of 3DOM Perovskite

Mixed Metal Oxides 127

Preparation of 3DOM LaFeO3 with Different

Pore Sizes 131

Preparation of Polymer Spheres and Colloidal Crystal

Templates 131

Synthesis of 3DOM LaFeO3 134

Characterization of 3DOM LaFeO3 134

Formation Mechanism 136

Conclusions 138

References 138

Thin Films and Superlattice Synthesis
Carmela Aruta and Antonello Tebano

143



7.1
7.2
7.2.1
7.2.1.1
7.2.1.2
7.2.1.3
7.2.2

Introduction 143

Thin Films and Superlattices Growth 145

Deposition Techniques 145

MBE 145

PLD 149

Sputtering 153

In Situ Monitoring: RHEED and Plume

Analysis 156

7.2.2.1 RHEED 156

7.2.2.2 Plume Analysis 159

7.3
Concluding Remarks 162


Acknowledgments 162

References 162

8

Perovskite and Derivative Compounds as Mixed

Ionic–Electronic Conductors 169

Caroline Pirovano, Aurélie Rolle, and Rose-Noëlle Vannier

8.1
8.2
8.2.1

Introduction 169

Perovskite as Mixed Ionic–Electronic Conductors 170

The Perovskite: A Flexible Structure for Mixed Ionic–Electronic

Conductivity 170

Cobaltites: Among the Best MIEC Materials 173

MIEC Electrochemical Performances as SOFC or SOEC

Electrodes 173


Conductivity and Oxygen Transport Properties in Mixed

Ionic- and Electronic-Conducting Perovskites 176

Electrical Conductivity 177


8.2.2
8.2.3
8.3
8.3.1

www.pdfgrip.com


Contents

8.3.2
8.3.3
8.3.4
8.4

Diffusion Coefficients 177

Surface Exchange Coefficients 179

Perovskite Materials and Related Compounds

Oxygen Transport Parameters 180


Conclusions 183

References 184


9

Perovskite and Related Oxides for Energy Harvesting by

Thermoelectricity 189

Sascha Populoh, O. Brunko, L. Karvonen, L. Sagarna, G. Saucke, P. Thiel,
M. Trottmann, N. Vogel-Schäuble, and A. Weidenkaff

9.1
9.2
9.3
9.4
9.5
9.6
9.7

Introduction to Thermoelectricity 189

CaMnO3-Based Compounds 190

EuTiO3 and Related Compounds 196

SrCoO3 δ and Related Phases 199


ZnO for Thermoelectric Applications 200

Thermoelectric Oxide Modules and Their Characterization 202

Concluding Remarks 204

References 204


10

Piezoelectrics and Multifunctional Composites
Ranjith Ramadurai and Vijayanandhini Kannan

10.1
10.2
10.3
10.4
10.4.1
10.4.2
10.4.3
10.4.4
10.5
10.5.1
10.6
10.7
10.8
10.9


History 211

Piezoelectricity: An Introduction 211

Piezoelectric Materials: An Overview 214

Lead-Free Piezoelectrics 215

BaTiO3–CaTiO3–BaZrO3 Solid Solutions 216

Structural Phase Diagram of BZT–BCT 217

Piezoelectric Properties of BCT–BZT 218

(Na0.5Bi0.5)TiO3 219

Piezoelectric Polymers 221

Polyvinylidene Fluoride 222

Piezoelectric Composites 223

Polymer–Ceramic Hybrid Piezoelectric Composites 225

Multifunctional Piezoelectric Composites 226

Summary 229

References 230



11

Microstructure and Nanoscale Piezoelectric/Ferroelectric Properties in
Ln2Ti2O7 (Ln = Lanthanide) Thin Films with Layered Perovskite
Structure 233

Sébastien Saitzek, ZhenMian Shao, Alexandre Bayart,

Pascal Roussel, and Rachel Desfeux


11.1
11.2

Introduction and Overview of Layered Perovskite Structures 233

Ln2Ti2O7 Compounds 236


www.pdfgrip.com

211


IX


X


Contents

11.2.1
11.2.2
11.2.3
11.3
11.3.1
11.3.2
11.3.3
11.4
11.4.1
11.4.2
11.4.3
11.4.4
11.5

Structural Properties of Ln2Ti2O7 with Ln = Lanthanide 236

Synthesis Way 237

Scope and Properties of the Ln2Ti2O7 Oxides 238

Growth and Structural Characterization of Ln2Ti2O7

Thin Films 239

Growth on (100)-Oriented SrTiO3 Substrates 239

Growth on (110)-Oriented SrTiO3 Substrates 242


Limit of Stability of the Layered Perovskite Structure 243

Piezo- and Ferroelectric Properties of Ln2Ti2O7 Thin Films 244

Experimental Setup 244

Ln2Ti2O7 (Ln = La, Pr, and Nd) Thin Films Grown on (110)-Oriented

SrTiO3 Substrates 246

Ln2Ti2O7 (Ln = La, Pr, and Nd) Thin Films Grown on (100)-Oriented

SrTiO3 Substrates 247

Metastable Ln2Ti2O7 (Ln = Sm, Eu, and Gd) Thin Films Grown on

(110)-Oriented SrTiO3 Substrates 249

Conclusion 250

Acknowledgments 251

References 251


12

Pigments Based on Perovskite 259

Matteo Ardit, Giuseppe Cruciani, Michele Dondi, and Chiara Zanelli


12.1
12.2
12.2.1
12.2.2
12.2.3
12.2.4
12.2.5
12.2.6
12.3

Introduction 259

Perovskite Pigments 259

Red and Orange 261

Yellow 261

Brown to Light Brown 262

Magenta to Pink 263

Blue 263

Black 263

(Y, REE) Aluminate Perovskites: Crystal Chemistry and Structural

Principles 263


Crystal Structure of Ideal and Distorted Ternary ABO3

Perovskites 263

Lattice Parameters, A Site Coordination, and Bond Valence Analysis in

(Y,REE) Orthoaluminates 264

Tilting of Octahedral Framework and Tolerance Factor 268

Chromium Incorporation: Basic Concepts and the YAlO3–YCrO3

Case Study 269

Local Bond Distances 269

Structural Relaxation Coefficient 270

Comparison with Other Al–Cr Solid Solutions 271

Polyhedral Bond Valence Method 272

The (La,Nd)(Ga1 xCrx)O3 Case Study 274


12.3.1
12.3.2
12.3.3
12.4

12.4.1
12.4.2
12.4.3
12.4.4
12.4.5

www.pdfgrip.com


Contents

12.5

Origin of Color in (Y, REE) Orthoaluminates 279

References 284


13

Electrolyte Materials
Viorica Parvulescu

289


13.1
Introduction 289

13.2

Properties of Solid Electrolyte Materials 290

13.2.1 Synthesis Methods and Properties of Mixed Oxides

Electrolytes 290

13.2.2 The Crystalline Phases and Conductivity 294

13.3
Mixed Oxides with Ionic Conductivity 295

13.3.1 Solid Electrolytes Based on ZrO2 296

13.3.2 Solid Electrolytes Based on CeO2 298

13.4
Mixed Oxides with Mixed Conductivity 301

13.5
Applications of Mixed Oxides as Electrolytes and Mixed

Conductors 303

13.6
Conclusions 306

References 306

14


CO2 Capture Using Dense Perovskite Membranes: Permeation

Models 311

Marc Pera-Titus

14.1
14.2

MIEC Membranes for Gas Separation 311

Background for Mass Transfer Modeling in Perovskite

Membranes 312

Gas Permeation Models for Perovskite Membranes 315

Single-Phase Perovskite Membranes 316

Models for O2 Semipermeation 318

Models for H2 Semipermeation 322

Dual-Phase Perovskite Membranes 325

Models for H2 Semipermeation within Supported Ni/Perovskite

DFMs 326

Models for H2 Semipermeation in Ni-Cermets DFMs 326


Models for CO2 Semipermeation in Infiltrated MC/Perovskite

DPMs 327

Measurement of Diffusion and Surface Exchange Coefficients 329

Semipermeation Coupled to Electrical Potential Measurements 329

Isotopic Exchange Depth Profile (IEDP) 331

Electrical Conductivity Relaxation (ECR) 333

Electrochemical Impedance Spectroscopy (EIS) 333

Diffusion and Surface Exchange Coefficients: Structure–Property

Correlations 334

Conclusions 334

Glossary 335


14.3
14.3.1
14.3.1.1
14.3.1.2
14.3.2
14.3.2.1

14.3.2.2
14.3.2.3
14.4
14.4.1
14.4.2
14.4.3
14.4.4
14.4.5
14.5

www.pdfgrip.com

XI


XII

Contents

Greek Symbols 336

Subscripts 336

Superscripts 337

Acronyms 337

References 337

15


Introduction to Rational Molecular Modeling Approaches
Randy Jalem and Masanobu Nakayama

15.1
15.2
15.2.1
15.2.2
15.3
15.4
15.5
15.6
15.7

Introduction 343

Theoretical Background on Ab Initio Calculation 343

Brief Review of Elementary Quantum Chemistry 343

Density Functional Theory 346

Simulation Model Construction 347

Electronic Structure 349

Ionic Transport 351

Atomic Arrangement, Phase Stability, and Transition 354


Conclusions and Outlook 359

References 360


343


Volume 2

Part Two Perovskite and Related Mixed Oxides in Catalysis:

From the Structure to the Catalytic Properties 367

16

Methane Combustion on Perovskites 369

Athanasios Ladavos and Philippos Pomonis

16.1
Perovskites as a Diverse and Active Class of Materials 369

16.1.1 Structural Diversity, Tolerance Factor, and Thermodynamic

Stability 370

16.2
Mixed Valences in Perovskites 371


16.2.1 Mixed Valences Due to Anion Deficiencies 371

16.2.2 Mixed Valences Due to Isostructural Substitution

of Cations 373

16.3
The Reversed Uptake of Oxygen and Its Different

Sources 373

16.4
The Mechanism of Methane Combustion 376

16.5
Kinetics of Methane Combustion 378

16.5.1 Rideal–Eley kinetics 379

16.5.2 First-Order Kinetics 380

16.5.3 The Power Law Kinetics 384

16.5.4 The Two Term Kinetics 385

16.6
Conclusions 386

Acknowledgments 387


References 387


www.pdfgrip.com


Contents

17

Total Oxidation of Volatile Organic Compounds
Vasile I. Parvulescu

17.1
17.2
17.3

Introduction 389

Specificity of Perovskites for Total Oxidation of VOCs 391

Morphology of Perovskites Investigated for Total Oxidation of

VOCs 395

Total Oxidation of VOCs under Thermal Activation

Conditions 397

Total Oxidation of Light Hydrocarbons 399


Total Oxidation of Oxygenated Organic Compounds 401

Total Oxidation of Halogenated Organic Compounds 402

Total Oxidation under Plasma Activation Conditions

in Gas 404

Photocatalytic Destruction of VOC 406

Conclusions 407

References 408


17.4
17.5
17.6
17.7
17.8
17.9
17.10

389


18

Total Oxidation of Heavy Hydrocarbons and Aromatics

Vasile I. Parvulescu and Pascal Granger

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9
18.10
18.11

Introduction 413

Perovskites and Oxygen Vacancy 414

Total Oxidation under Thermal Activation Conditions 416

Total Oxidation of Aromatic Hydrocarbons 417

Total Oxidation of Polycyclic Aromatic Hydrocarbons 424

Total Oxidation of Soot 425

Total Oxidation of Halogenated Hydrocarbons 426

Total Oxidation under Plasma Activation Conditions 428


Total Oxidation of Aromatics 429

Total Oxidation of Soot 431

Conclusions 431

References 432


19

Progresses on Soot Combustion Perovskite Catalysts
Agustín Bueno-López

19.1
19.2
19.3

Introduction 437

Particular Aspects of the Soot Combustion Reactions 438

Soot Combustion Perovskite Catalysts: Effect of Partial Substitution of

Cations in the Perovskite Oxide 439

Kinetic and Mechanistic Studies 442

Three-Dimensionally Ordered Macroporous Soot Combustion


Perovskite Catalysts 444

Study of Soot Combustion Perovskite Catalysts in Real Diesel

Exhausts 445

Microwave-Assisted Perovskite-Catalyzed Soot

Combustion 446


19.4
19.5
19.6
19.7

www.pdfgrip.com

413


437


XIII


XIV

Contents


19.8
19.9

20

Deactivation of Soot Combustion Catalysts by Perovskite Structure

Formation 446

Conclusions 446

Acknowledgments 447

References 447

Low-Temperature CO Oxidation 451

Oscar H. Laguna, Luis F. Bobadilla, Willinton Y. Hernández,
and Miguel Angel Centeno

20.1
20.2
20.2.1
20.2.2
20.2.3
20.3

Overview 451


Low-Temperature CO Oxidation Reaction 453

LaBO3-Type Perovskites 454

La1 xAxB1 yB´ yO3±δ-Type Perovskites 456

Noble Metal–Perovskite Hybrid Materials 456

H2 Purification-Related CO Oxidations: Water-Gas Shift (WGS) and

PROX Reactions 459

20.3.1 Perovskites for the Water-Gas Shift Reaction 460

20.3.2 Perovskites for the Preferential CO Oxidation in the Presence of H2

(PROX) 464

20.4
Concluding Remarks 468

Acknowledgments 468

References 468

21

Liquid-Phase Catalytic Oxidations with Perovskites and

Related Mixed Oxides 475


Viorica Parvulescu

21.1
21.2
21.3
21.3.1
21.3.2
21.3.3
21.4
21.4.1
21.4.2
21.5
21.6

Introduction 475

Active Sites and Oxidants 476

Catalytic Reactions with Green Oxidants 480

Perovskites Catalysts 480

Microporous Mixed Oxide Catalysts 483

Mesoporous Mixed Oxide Catalysts 486

Heterogeneous Photo-Fenton Oxidation 488

Photo-Fenton Reactions with Perovskites 490


Photo-Fenton Reactions with Porous Mixed Oxides 491

Photocatalytic Ozonation Reactions 492

Conclusions 493

References 494


22

Dry Reforming of Methane
Catherine Batiot-Dupeyrat

22.1
22.2

Introduction 501

LaNiO3 as Catalyst Precursor for Carbon Dioxide Reforming of

Methane 502

Influence of the Substitution of Nickel in the Perovskite

LaNi1 yByO3 506


22.3


501


www.pdfgrip.com


Contents

22.4
22.5
22.6
22.7

Influence of the Substitution of Lanthanum in the Perovskite

La1 xAxNi1 yByO3 507

Perovskite as Support of Active Sites in the Dry Reforming of

Methane 510

Supported Perovskite for Dry Reforming of Methane 510

Conclusion 512

References 512


23


Recent Progress in Oxidative Conversion of Methane to

Value-Added Products 517

Evgenii V. Kondratenko and Uwe Rodemerck

23.1
23.2
23.2.1
23.2.2
23.2.3
23.3
23.4
23.5

Methane: Sources and Feedstock for Chemical Industry 517

Oxidative Coupling of Methane 519

OCM Reactors and Modes of Operation 520

OCM Process Concepts 522

Strategies for Developing New OCM Catalysts 526

Methane to Methanol and Its Derivatives 528

Methane to Acetic Acid 530


Conclusions 532

References 533


24

Steam Reforming of Alcohols from Biomass Conversion for H2

Production 539

Florence Epron, Nicolas Bion, Daniel Duprez, and
Catherine Batiot-Dupeyrat

24.1
24.2
24.2.1
24.2.2
24.2.2.1
24.2.2.2
24.3
24.3.1
24.3.1.1
24.3.1.2
24.3.1.3
24.3.2
24.3.3
24.4

Introduction 539


Generalities on Alcohol Steam Reforming 539

Types of Alcohols Used 539

Reactions Involved and Thermodynamic Data 540

Ethanol Steam Reforming 540

Glycerol Steam Reforming 542

Catalysts 544

Types of Catalysts Used 544

Noble Metal Catalysts 545

Non-Noble Metal Catalysts 545

Effect of the Support 546

Why Perovskite-Type Catalysts are Good Candidates? 547

General Assessement 549

Catalytic Performances of Perovskite-Type Catalysts for

H2 Production from Alcohols 549

24.4.1 Ethanol Steam Reforming 549


24.4.2 Glycerol Steam Reforming 551

24.5
Summary and Outlook 552

References 553


www.pdfgrip.com

XV


XVI

Contents

25

Three-Way Catalysis 559

Ioannis V. Yentekakis and Michalis Konsolakis

25.1
25.2

Three-Way Catalytic Converters (TWCs): An Introduction 559

Three-Way Catalytic Materials: Potentials/Aptitudes,


Limitations, and Future Trends 563

Three-Way Catalysis by Ceria and Ceria-Based Mixed Oxides 565

CO Oxidation 567

Oxidation of Hydrocarbons 568

NO Reduction by CO or HCs 568

Simulated Stoichiometric Exhaust Conditions 568

Application of Perovskites in Exhaust Emission Control 570

Model Reactions 572

CO Oxidation 572

N2O Decomposition 573

NO Reduction by CO 573

NO Reduction by Propene 575

Simulated Exhaust Conditions 576

Conclusions and Guidelines 579

References 580



25.3
25.3.1
25.3.2
25.3.3
25.3.4
25.4
25.4.1
25.4.1.1
25.4.1.2
25.4.1.3
25.4.1.4
25.4.2
25.5

26

Lean Burn DeNOx Applications: Stationary and

Mobile Sources 587

Angelos M. Efstathiou and Vasilis N. Stathopoulos

26.1
26.2
26.2.1
26.2.2
26.3
26.3.1

26.3.2
26.3.3
26.4

Scope 587

Introduction 588

Hydrogen-Selective Catalytic Reduction (H2-SCR) 588

Lean NOx After Treatment of Diesel Engine Emissions 590

Case Studies 594

H2-SCR of NO 594

Lean NOx Trap 601

Simultaneous NOx Reduction and Soot Oxidation 605

Concluding Remarks 605

References 606


27

Catalytic Abatement of N2O from Stationary Sources
Pascal Jean-Philippe Dacquin and Christophe Dujardin


27.1
27.2

Introduction 611

The Abatement of N2O From Nitric Acid Plant:

A Case Study 613

Different Possible Scenarios 613

High-Temperature Decomposition of N2O 615

Medium-Temperature Decomposition of N2O 618

End-of-Pipe Technologies 622

Conclusion 626

References 627


27.2.1
27.2.2
27.2.3
27.2.4
27.3

www.pdfgrip.com


611



Contents

28

Perovskites as Catalyst Precursors for Fischer–Tropsch Synthesis
Anne-Cécile Roger and Alain Kiennemann

28.1
28.2
28.2.1
28.2.2
28.2.2.1
28.2.2.2
28.3
28.4

Introduction 631

Alcohols Synthesis 632

Methanol Synthesis 633

Higher Alcohols Synthesis 638

Ethanol Synthesis 638


C1–Cn Alcohols Synthesis 639

Hydrocarbons Synthesis 644

Conclusions 654

References 654


29

FexZr1 − xO2 and Ce1 − xFexO2 − δ Mixed Oxide Catalysts:

DRIFTS Analyses of Synthesis Gas and TPSR of Propane Dry

Reforming 659

Rodrigo Brackmann, Ricardo Scheunemann, Andre Luiz Alberton, and
Martin Schmal

29.1
29.2
29.2.1
29.2.1.1
29.2.1.2
29.2.1.3
29.2.2

631



Introduction 659

FexZr1 xO2 and Ce1 xFexO2 δ Mixed Oxide Systems 659

Part 1: DRIFTS Analyses with FexZr1 xO2 Mixed Oxides 661

CO Adsorption 661

Adsorption of CO + O2 + He 663

Adsorption of CO + O2 + H2 + He 664

Part 2: TPSR of Propane Oxidation with CO2 on Ce1 xFexO2 δ Mixed

Oxides 667

29.2.2.1 Thermodynamics 667

29.2.2.2 Temperature-Programmed Surface Reaction 667

29.3
Conclusions 671

References 672

30

Photocatalytic Assisted Processes 675


Bogdan Cojocaru and Vasile I. Parvulescu

30.1
30.2
30.2.1
30.2.2
30.2.3
30.2.4
30.2.5
30.2.6
30.2.7
30.3
30.3.1
30.3.2
30.3.3

Introduction 675

Titanates 677

Calcium Titanates 677

Strontium Titanates 678

Barium Titanates 683

Lanthanum Titanates 684

Iron Titanates 685


Other Titanates 685

Bismuth Titanates 686

Ferrites 686

Calcium Ferrites 686

Strontium Ferrites 686

Barium Ferrites 687


www.pdfgrip.com

XVII


XVIII

Contents

30.3.4
30.3.5
30.3.6
30.4

Yttrium Ferrites 687

Rare Earth Ferrites 688


Other Ferrites 689

Conclusions 690

References 690


Part Three
31

Future Prospects from Synthesis to Reactor Design 699


Mesoporous TM Oxide Materials by Surfactant-Assisted Soft

Templating 701

Altug S. Poyraz, Yongtao Meng, Sourav Biswas, and Steven L. Suib

31.1
Introduction 701

31.1.1 Use of a Hard Template 701

31.1.2 Mesoporous Oxide Materials by Chemical

Transformation 702

31.1.3 Mesoporous Oxide Materials by Soft Micelle Templating 703


31.2
Surfactant and Micelleization 705

31.2.1 Types of Surfactants 705

31.2.2 Inorganic Additives 705

31.2.3 Organic Additives 706

31.3
Surfactant–Inorganic (S–I) Interactions 707

31.3.1 Thermodynamics of Mesostructured Materials 707

31.3.2 Surfactant–Inorganic (ΔGinter) Interactions 707

31.3.2.1 Coulombic S–I Interactions for Mesoporous TM Oxides 708

31.3.2.2 Covalent S–I Interactions for Mesoporous TM Oxides 709

31.3.2.3 S to I Charge Transfer Interactions for Mesoporous TM Oxides 710

31.3.2.4 Hydrogen-Bonding (S–I) Interactions for Mesoporous

TM Oxides 711

31.4
Stability of a Mesoporous TM Oxide 712


31.4.1 Template Removal 713

31.5
Summary and Future Prospects 713

References 714

32

Development of Robust Mixed-Conducting Membranes

with High Permeability and Stability 719

Tomás Ramirez-Reina, José Luis Santos, Nuria García-Moncada,
Svetlana Ivanova, and José Antonio Odriozola

32.1
32.2
32.3
32.3.1
32.3.2
32.3.3
32.4

Overview 719

Mechanical Robustness 721

Chemical Robustness 725


Tolerance Toward CO2 725

Tolerance Toward SO2 729

Tolerance Toward Reducing Environments 731

Future Applications 732

References 732


www.pdfgrip.com


Contents

33

Catalytic Reactors with Membrane Separation
Fausto Gallucci and Jon Zuniga

33.1
33.2
33.2.1
33.2.2
33.3
33.3.1
33.4
33.5


Introduction 739

Types of Reactors 740

Packed Bed Membrane Reactors 740

Fluidized Bed Membrane Reactors 744

Membranes for O2 Separation 753

Membrane Sealing 755

Membrane Reactors with O2 Membranes 758

Conclusions 768

References 768


34

The Development of Millistructured Reactors for High

Temperature and Short Time Contact 773

Ana Raquel de la Osa, Anne Giroir-Fendler, and Jose Luis Valverde

34.1
34.2
34.2.1

34.2.2
34.2.3
34.2.3.1
34.2.3.2
34.2.3.3
34.2.4
34.2.5
34.3
34.3.1
34.3.2
34.3.3
34.3.4
34.3.5
34.3.5.1
34.3.5.2
34.3.6
34.3.6.1
34.3.6.2
34.3.6.3
34.3.6.4
34.3.7
34.3.7.1
34.3.7.2
34.3.8
34.3.8.1
34.3.8.2
34.3.8.3

Introduction 773


Classification of Microreactors 774

Capacity 775

Material 775

Reaction Phase 776

Reactions Involving Liquids 776

Gas Phase 776

Catalytic Reactions Involving Three Phases 777

Catalytic System 777

Other Configurations 778

Applications and Possible Scale-up 778

Ammonia Oxidation 779

Diesel Particulate Combustion 779

Ethylene Oxide Synthesis 779

Oxidative Coupling of Methane 779

Hydrogenation Reactions 780


Hydrogenation of Benzene to Cyclohexene 780

Hydrogenation of Cyclohexene 780

Dehydrogenation Reactions 780

Dehydrogenation of Methylcyclohexane 780

Dehydrogenation of Cyclohexane 780

Oxidative Dehydrogenation of Methanol 781

Dehydrogenation of Alkanes 781

Synthesis Gas Production 781

Steam Methane Reforming 781

Partial Oxidation of Methane 781

Fuel Production 781

Direct Partial Oxidation of Methane to C1 Oxygenates 781

Total Syngas Methanation to Synthetic Natural Gas 782

Fischer–Tropsch Synthesis 782


www.pdfgrip.com


739


XIX


XX

Contents

34.3.8.4
34.3.8.5
34.3.8.6
34.3.8.7
34.4
34.5

Synthesis of Methanol and Ethanol 783

Synthesis of Dimethyl Ether 783

Biodiesel Production 783

Hydrogen Production 784

Simulation Case 785

Conclusions 789


References 791


35

Single Brick Solution for Lean-Burn DeNOx and Soot Abatement
Sonia Gil, Jesus Manuel Garcia-Vargas, Leonarda F. Liotta,

Philippe Vernoux, and Anne Giroir-Fendler


35.1
35.2
35.2.1
35.2.2

Introduction 797

Diesel Posttreatment 799

Specificity of Diesel Engine 799

Diesel Unburned Hydrocarbon and Carbon Monoxide

Oxidation 799

Treatment of Soot 801

DeNOx Reduction 803


Urea and NH3 Selective Catalytic Reduction 804

Single Brick Solution for Lean-Burn DeNOx and Soot

Abatement 807

Conclusion 810

References 811


35.2.3
35.2.4
35.2.4.1
35.2.4.2
35.3

797


36

Tools for the Kinetics of Fast Reactions 817

Gregory Biausque, Marie Rochoux, David Farrusseng, and Yves Schuurman

36.1
36.2
36.2.1
36.2.2

36.2.3
36.2.4
36.2.5

Introduction 817

Oxygen Interaction 817

Oxygen Nonstoichiometry 818

Oxygen Isotopic Exchange Techniques 819

Secondary Ion Mass Spectrometry 819

Steady-State Isotopic Transient Oxygen Exchange 819

Case Study: Prediction of the Oxygen Permeation Flux through a Thin

Ceramic Membrane from Powder Measurements 820

Conclusions 823

Measurement of Kinetics of Fast Reactions 823

Annular Reactor 824

Modeling of Annular Reactors 825

Case Study: Kinetics of High-Temperature Ammonia Oxidation in an


Annular Reactor 827

TAP Reactor 830

Case Study: TAP Experiments for Ammonia Oxidation over

LaCoO3 831

Conclusions 833

References 833


36.2.6
36.3
36.3.1
36.3.2
36.3.3
36.3.4
36.3.5
36.3.6

www.pdfgrip.com


Contents

37

Perovskites as Oxygen Carrier-Transport Materials for Hydrogen and


Carbon Monoxide Production by Chemical Looping Processes 839

Lori Nalbandian and Vassilis Zaspalis

37.1
37.1.1
37.1.2
37.1.3
37.1.4

Introduction 839

Chemical Looping Combustion 839

Oxygen Carriers 840

Chemical Looping Reforming 841

Chemical Looping Water Splitting and Chemical Looping

Carbon Dioxide Splitting 842

Thermochemical Water or Carbon Dioxide Splitting 842

Chemical Looping in Dense Membrane Reactors 843

Perovskites for H2 and CO Production by Chemical Looping

Processes 844


Powdered Perovskites: Chemical Looping Processes 845

Reduction by an Oxidizable Compound 845

Reduction by Solar Radiation 849

Perovskites as Dense Membranes 850

Perovskites Used as Supports 856

Conclusions 857

References 857


37.1.5
37.1.6
37.2
37.2.1
37.2.1.1
37.2.1.2
37.2.2
37.2.3
37.3

38

Perovskites and Related Mixed Oxides for SOFC Applications 863


Steven S.C. Chuang and Long Zhang

38.1
38.2
38.3
38.3.1
38.3.2
38.4
38.5

Introduction 863

Fuel Cells 864

Perovskites 870

Perovskite as a Cathode Material 870

Low-Temperature Cathodes 873

Anode Materials 874

Summary and Future R&D 875

References 876


39

Perovskite Membranes for CO2 Capture: Current Trends and Future


Prospects 881

Marc Pera-Titus and Anne Giroir-Fendler

39.1
39.2

Introduction 881

Pre-, Post-, and Oxy-combustion CO2 Capture: High- versus

Low-Temperature Membrane Technologies 882

Low-Temperature Membranes: Porous Inorganic Membranes 883

High-Temperature Membranes: Mixed Ionic–Electronic Conducting

Membranes Based on Perovskites 885

R&D Membrane Concepts for High-Temperature CO2 Capture 889

Perovskite Membranes for O2 Separation 889

O2 Separation and Combustion 889

Gasification Systems Combined with Combustion 890


39.2.1

39.2.2
39.3
39.3.1
39.3.1.1
39.3.1.2

www.pdfgrip.com

XXI


XXII

Contents

39.3.2
39.3.3
39.4
39.4.1
39.4.2
39.4.2.1
39.4.2.2
39.4.2.3
39.4.3
39.4.3.1
39.4.3.2
39.4.3.3
39.4.4
39.5


Perovskite Membranes for H2 Separation and Steam Dosing 891

Perovskite-Containing Membranes for CO2 Separation 892

Recent Membrane Developments for CO2 Capture 893

General Criteria for Membrane Design 893

Perovskite Membranes for Selective O2 Permeation 895

Co-Containing Perovskites 895

Co-Free Perovskites 901

Dual-Phase Membranes 902

Perovskite Membranes for Selective H2 Permeation 904

Ce-Containing Perovskites (Cerates) 904

Dual-Phase Metal Cerates: Cermets 905

Ce-Free Formulations 909

Molten Carbonate/Perovskite Membranes for Selective CO2

Permeation 910

Conclusions and Perspectives 913


Glossary 915

Greek Symbols 915

Subscripts 915

Acronyms 915

References 916

Index 929


www.pdfgrip.com


XXIII

List of Contributors
Houshang Alamdari

Carmela Aruta

Laval University
Department of Mining,
Metallurgical and Materials
Engineering
1065 avenue de la médecine
Quebec City, QC G1V 0A6
Canada


National Research Council
CNR-SPIN
Via del Politecnico 1
00133 Rome
Italy

Andre Luiz Alberton

Federal University of Rio de
Janeiro/COPPE
Department of Chemical
Engineering/NUCAT
Av.Horacio Macedo 2030
CEP 21941-972
Centro de Tecnologia Bl.G – 121
Cidade Universitária
Rio de Janeiro
Brazil
Matteo Ardit

University of Ferrara
Department of Physics and Earth
Sciences
Via Saragat 1
44122 Ferrara
Italy

Catherine Batiot-Dupeyrat


Université de Poitiers
Institut de Chimie des Milieux et
Matériaux de Poitiers (IC2MP)
ENSIP, UMR CNRS 7285
1 rue Marcel Doré, TSA 41105
86073 Poitiers Cedex 9
France
Alexandre Bayart

Université d’Artois
Faculté des Sciences Jean Perrin
Unité de Catalyse et de Chimie du
Solide (UCCS)
CNRS UMR 8181
Rue Jean Souvraz – SP 18
62307 Lens
France

www.pdfgrip.com


×