Edited by Pascal Granger, Vasile I. Parvulescu,
Serge Kaliaguine, and Wilfrid Prellier
Perovskites and
Related Mixed Oxides
Concepts and Applications
www.pdfgrip.com
Edited by
Pascal Granger,
Vasile I. Parvulescu,
Serge Kaliaguine,
and Wilfrid Prellier
Perovskites and Related
Mixed Oxides
www.pdfgrip.com
Related Titles
Ladewig, B., Jiang, S.P., Yan, Y. (eds.)
Raveau, B., Seikh, M.
Materials for Low-Temperature
Fuel Cells
Cobalt Oxides
2015
2012
Print ISBN: 978-3-527-33042-3; also available in
electronic formats
Print ISBN: 978-3-527-33147-5; also available in
electronic formats
Levitin, V.
Pacchioni, G., Valeri, S. (eds.)
Interatomic Bonding in Solids
Oxide Ultrathin Films
Fundamentals, Simulation, and Applications
Science and Technology
2014
2012
Print ISBN: 978-3-527-33507-7; also available in
electronic formats
Print ISBN: 978-3-527-33016-4; also available in
electronic formats
Ogale, S.B., Venkatesan, T.V., Blamire, M. (eds.)
Duò, L., Finazzi, M., Ciccacci, F. (eds.)
Functional Metal Oxides
Magnetic Properties
of Antiferromagnetic
Oxide Materials
New Science and Novel Applications
2013
Print ISBN: 978-3-527-33179-6; also available in
electronic formats
From Crystal Chemistry to Physics
Surfaces, Interfaces, and Thin Films
2010
Jiang, S.P., Yan, Y. (eds.)
Print ISBN: 978-3-527-40881-8; also available in
electronic formats
Materials for HighTemperature Fuel Cells
Bruce, D.W., O’Hare, D., Walton, R.I. (eds.)
Functional Oxides
2013
Print ISBN: 978-3-527-33041-6; also available in
electronic formats
2010
Print ISBN: 978-0-470-99750-5; also available in
electronic formats
Altomare, F., Chang, A.M.
Kumar, C.S. (ed.)
One-Dimensional
Superconductivity in Nanowires
Nanostructured Oxides
2013
2009
Print ISBN: 978-3-527-40995-2; also available in
electronic formats
Print ISBN: 978-3-527-32152-0; also available in
electronic formats
Bezryadin, A.
Superconductivity in Nanowires
Fabrication and Quantum Transport
2012
Print ISBN: 978-3-527-40832-0; also available in
electronic formats
www.pdfgrip.com
Edited by Pascal Granger, Vasile I. Parvulescu,
Serge Kaliaguine, and Wilfrid Prellier
Perovskites and Related Mixed Oxides
Concepts and Applications
www.pdfgrip.com
Editors
Prof. Pascal Granger
Université Lille
Unité de Catalyse et de Chimie du Solide
Bâtiment C3
59655 Villeneuve d’Ascq Cedex
France
Prof. Dr. Vasile I. Parvulescu
Prof. Serge Kaliaguine
Laval University
Department of Chemical Engineering
1065, Avenue de la médecine
Quebec City, QC G1V 0A6
Canada
Université de Caen
Laboratoire CRISMAT
6, bvd Maréchal Juin
14050 Caen
France
Library of Congress Card No.: applied for
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the
British Library.
University of Bucharest
Faculty of Chemistry
Regina Elisabetha Bld. 4-12
030016 Bucharest
Romania
Dr. Wilfrid Prellier
All books published by Wiley-VCH are carefully
produced. Nevertheless, authors, editors, and
publisher do not warrant the information contained
in these books, including this book, to be free of
errors. Readers are advised to keep in mind that
statements, data, illustrations, procedural details
or other items may inadvertently be inaccurate.
Bibliographic information published by the
Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this
publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the
Internet at <>.
2016 Wiley-VCH Verlag GmbH & Co. KGaA,
Boschstr. 12, 69469 Weinheim, Germany
All rights reserved (including those of translation into
other languages). No part of this book may be repro
duced in any form – by photoprinting, microfilm, or
any other means – nor transmitted or translated into
a machine language without written permission from
the publishers. Registered names, trademarks, etc.
used in this book, even when not specifically marked
as such, are not to be considered unprotected by law.
Print ISBN: 978-3-527-33763-7
ePDF ISBN: 978-3-527-68659-9
ePub ISBN: 978-3-527-68661-2
Mobi ISBN: 978-3-527-68662-9
oBook ISBN: 978-3-527-68660-5
Typesetting Thomson Digital, Noida, India
Printed on acid-free paper
www.pdfgrip.com
V
Contents
List of Contributors
Preface XXXV
XXIII
Volume 1
Part One Rational Design and Related Physical Properties 1
1
From Solid-State Chemistry to Soft Chemistry Routes
Vicente Rives
1.1
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.2.7
1.2.8
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.3.4.1
1.3.4.2
1.3.5
1.3.6
3
Introduction 3
Processes Involving Solids 4
The Ceramic Method 4
Microwave Synthesis 5
Self-Propagating High-Temperature Synthesis (SHS) 6
The Precursor Method 6
Hydrothermal Synthesis 7
High-Pressure Methods 8
Mechanochemistry 8
Other Methods Starting from Solids 9
Processes Involving Liquids 9
Flux Method 9
Molten Salt Electrolysis 10
Sol–Gel 10
Spray Drying (SD) and Related Methods 13
Freeze-Drying 14
Spray–Freeze-Drying 14
Molecular Self-Assembling 14
Other Methods Starting from Liquid Reactants
or Solutions 15
1.3.6.1 Ionic Liquids 15
1.3.6.2 The Gel Combustion Method 15
1.3.6.3 Sonication 15
www.pdfgrip.com
VI
Contents
1.3.6.4
1.4
1.4.1
1.4.2
1.5
1.6
1.7
1.8
Reverse Microemulsion 15
Processes Involving Gases or Vapors 16
Gas Flame Combustion 16
Chemical Vapor Deposition (CVD) 16
Single Crystals 16
Nanoparticles 18
Films 19
Conclusions 19
References 20
2
Mechanochemistry 25
Houshang Alamdari and Sébastien Royer
2.1
2.2
2.3
2.4
2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.6
2.6.1
Introduction 25
Historical Development 25
Terminology 28
Mechanosynthesis Process 29
Milling Facilities
32
Spex Mills 32
Planetary Mills
34
Attrition Mills
35
Zoz Mills 36
Mechanosynthesis of Perovskites 37
Looking for an Alternative Route to Synthesize
New Compositions 38
Lowering Sintering Temperature 38
Reducing Crystallite Size and Modifying Particle
Morphology 39
Increasing Specific Surface Area 40
Concluding Remarks 42
References 43
2.6.2
2.6.3
2.6.4
2.7
3
Synthesis and Catalytic Applications of Nanocast
Oxide-Type Perovskites 47
Mahesh Muraleedharan Nair and Serge Kaliaguine
3.1
3.2
3.3
3.4
3.5
3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
Introduction 47
Perovskite Structure 48
Evolution of Perovskite Synthesis 49
General Principles of Nanocasting 51
Nanocasting of Perovskites 52
Catalytic Studies 56
Total Oxidation of Methane 56
Reduction of NO to N2 57
Chemical Looping Combustion 58
Total Oxidation of Methanol 59
Dry Reforming of Methane 60
www.pdfgrip.com
Contents
3.7
Conclusions and Perspectives 63
References 64
4
Aerosol Spray Synthesis of Powder Perovskite-Type Oxides 69
Davide Ferri, Andre Heel, and Dariusz Burnat
4.1
4.2
4.2.1
4.2.2
4.3
4.4
4.4.1
4.4.2
Introduction 69
Flame Spray Synthesis 71
Methane Flame 72
Acetylene Flame 75
Flame Hydrolysis 80
Ultrasonic Spray Synthesis 82
General Particle Properties 83
Citric Acid Assisted Synthesis 85
References 87
5
Application of Microwave and Ultrasound Irradiation in
the Synthesis of Perovskite-Type Oxides ABO3 91
Juan C. Colmenares, Agnieszka Magdziarz, and Paweł Lisowski
5.1
5.2
5.2.1
5.2.2
Introduction 91
Microwave Methodology 92
Basic Concepts of Microwave Chemistry 92
Microwave Heating in Combination with Traditional
Synthesis Methods 93
5.2.2.1 Microwave-Assisted Hydrothermal Method (HTMW) 93
5.2.2.2 Other Microwave-Assisted Methods 100
5.3
Ultrasound Methodology 101
5.3.1 Basic Concepts of Ultrasound Chemistry 101
5.3.2 Ultrasound-Assisted Coprecipitation Method 102
5.3.3 Ultrasound-Assisted Sol–Gel Method 103
5.3.4 Ultrasound Spray Pyrolysis 105
5.3.5 Other Ultrasound-Assisted Methods 107
5.4
Concluding Remarks and Outlook 108
Acknowledgments 108
References 109
6
Three-Dimensionally Ordered Macroporous (3DOM)
Perovskite Mixed Metal Oxides 113
Masahiro Sadakane and Wataru Ueda
6.1
6.2
6.2.1
6.2.1.1
6.2.1.2
6.2.1.3
6.2.2
Introduction 113
3DOM Materials 114
Preparation of 3DOM Materials 114
Colloidal Crystal Templates 114
Infiltration of Precursors in the Voids of Templates 122
Removal of Templates 122
Structure of 3DOM Materials (Inverse Opal Structures) 122
www.pdfgrip.com
VII
VIII
Contents
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.4.1
6.3.4.2
6.3.4.3
6.3.4.4
6.4
7
Preparation of 3DOM Perovskite Mixed
Metal Oxides 123
Precursor Solution 123
Selection of Sphere Templates 126
Synthesis Methods and Applications of 3DOM Perovskite
Mixed Metal Oxides 127
Preparation of 3DOM LaFeO3 with Different
Pore Sizes 131
Preparation of Polymer Spheres and Colloidal Crystal
Templates 131
Synthesis of 3DOM LaFeO3 134
Characterization of 3DOM LaFeO3 134
Formation Mechanism 136
Conclusions 138
References 138
Thin Films and Superlattice Synthesis
Carmela Aruta and Antonello Tebano
143
7.1
7.2
7.2.1
7.2.1.1
7.2.1.2
7.2.1.3
7.2.2
Introduction 143
Thin Films and Superlattices Growth 145
Deposition Techniques 145
MBE 145
PLD 149
Sputtering 153
In Situ Monitoring: RHEED and Plume
Analysis 156
7.2.2.1 RHEED 156
7.2.2.2 Plume Analysis 159
7.3
Concluding Remarks 162
Acknowledgments 162
References 162
8
Perovskite and Derivative Compounds as Mixed
Ionic–Electronic Conductors 169
Caroline Pirovano, Aurélie Rolle, and Rose-Noëlle Vannier
8.1
8.2
8.2.1
Introduction 169
Perovskite as Mixed Ionic–Electronic Conductors 170
The Perovskite: A Flexible Structure for Mixed Ionic–Electronic
Conductivity 170
Cobaltites: Among the Best MIEC Materials 173
MIEC Electrochemical Performances as SOFC or SOEC
Electrodes 173
Conductivity and Oxygen Transport Properties in Mixed
Ionic- and Electronic-Conducting Perovskites 176
Electrical Conductivity 177
8.2.2
8.2.3
8.3
8.3.1
www.pdfgrip.com
Contents
8.3.2
8.3.3
8.3.4
8.4
Diffusion Coefficients 177
Surface Exchange Coefficients 179
Perovskite Materials and Related Compounds
Oxygen Transport Parameters 180
Conclusions 183
References 184
9
Perovskite and Related Oxides for Energy Harvesting by
Thermoelectricity 189
Sascha Populoh, O. Brunko, L. Karvonen, L. Sagarna, G. Saucke, P. Thiel,
M. Trottmann, N. Vogel-Schäuble, and A. Weidenkaff
9.1
9.2
9.3
9.4
9.5
9.6
9.7
Introduction to Thermoelectricity 189
CaMnO3-Based Compounds 190
EuTiO3 and Related Compounds 196
SrCoO3 δ and Related Phases 199
ZnO for Thermoelectric Applications 200
Thermoelectric Oxide Modules and Their Characterization 202
Concluding Remarks 204
References 204
10
Piezoelectrics and Multifunctional Composites
Ranjith Ramadurai and Vijayanandhini Kannan
10.1
10.2
10.3
10.4
10.4.1
10.4.2
10.4.3
10.4.4
10.5
10.5.1
10.6
10.7
10.8
10.9
History 211
Piezoelectricity: An Introduction 211
Piezoelectric Materials: An Overview 214
Lead-Free Piezoelectrics 215
BaTiO3–CaTiO3–BaZrO3 Solid Solutions 216
Structural Phase Diagram of BZT–BCT 217
Piezoelectric Properties of BCT–BZT 218
(Na0.5Bi0.5)TiO3 219
Piezoelectric Polymers 221
Polyvinylidene Fluoride 222
Piezoelectric Composites 223
Polymer–Ceramic Hybrid Piezoelectric Composites 225
Multifunctional Piezoelectric Composites 226
Summary 229
References 230
11
Microstructure and Nanoscale Piezoelectric/Ferroelectric Properties in
Ln2Ti2O7 (Ln = Lanthanide) Thin Films with Layered Perovskite
Structure 233
Sébastien Saitzek, ZhenMian Shao, Alexandre Bayart,
Pascal Roussel, and Rachel Desfeux
11.1
11.2
Introduction and Overview of Layered Perovskite Structures 233
Ln2Ti2O7 Compounds 236
www.pdfgrip.com
211
IX
X
Contents
11.2.1
11.2.2
11.2.3
11.3
11.3.1
11.3.2
11.3.3
11.4
11.4.1
11.4.2
11.4.3
11.4.4
11.5
Structural Properties of Ln2Ti2O7 with Ln = Lanthanide 236
Synthesis Way 237
Scope and Properties of the Ln2Ti2O7 Oxides 238
Growth and Structural Characterization of Ln2Ti2O7
Thin Films 239
Growth on (100)-Oriented SrTiO3 Substrates 239
Growth on (110)-Oriented SrTiO3 Substrates 242
Limit of Stability of the Layered Perovskite Structure 243
Piezo- and Ferroelectric Properties of Ln2Ti2O7 Thin Films 244
Experimental Setup 244
Ln2Ti2O7 (Ln = La, Pr, and Nd) Thin Films Grown on (110)-Oriented
SrTiO3 Substrates 246
Ln2Ti2O7 (Ln = La, Pr, and Nd) Thin Films Grown on (100)-Oriented
SrTiO3 Substrates 247
Metastable Ln2Ti2O7 (Ln = Sm, Eu, and Gd) Thin Films Grown on
(110)-Oriented SrTiO3 Substrates 249
Conclusion 250
Acknowledgments 251
References 251
12
Pigments Based on Perovskite 259
Matteo Ardit, Giuseppe Cruciani, Michele Dondi, and Chiara Zanelli
12.1
12.2
12.2.1
12.2.2
12.2.3
12.2.4
12.2.5
12.2.6
12.3
Introduction 259
Perovskite Pigments 259
Red and Orange 261
Yellow 261
Brown to Light Brown 262
Magenta to Pink 263
Blue 263
Black 263
(Y, REE) Aluminate Perovskites: Crystal Chemistry and Structural
Principles 263
Crystal Structure of Ideal and Distorted Ternary ABO3
Perovskites 263
Lattice Parameters, A Site Coordination, and Bond Valence Analysis in
(Y,REE) Orthoaluminates 264
Tilting of Octahedral Framework and Tolerance Factor 268
Chromium Incorporation: Basic Concepts and the YAlO3–YCrO3
Case Study 269
Local Bond Distances 269
Structural Relaxation Coefficient 270
Comparison with Other Al–Cr Solid Solutions 271
Polyhedral Bond Valence Method 272
The (La,Nd)(Ga1 xCrx)O3 Case Study 274
12.3.1
12.3.2
12.3.3
12.4
12.4.1
12.4.2
12.4.3
12.4.4
12.4.5
www.pdfgrip.com
Contents
12.5
Origin of Color in (Y, REE) Orthoaluminates 279
References 284
13
Electrolyte Materials
Viorica Parvulescu
289
13.1
Introduction 289
13.2
Properties of Solid Electrolyte Materials 290
13.2.1 Synthesis Methods and Properties of Mixed Oxides
Electrolytes 290
13.2.2 The Crystalline Phases and Conductivity 294
13.3
Mixed Oxides with Ionic Conductivity 295
13.3.1 Solid Electrolytes Based on ZrO2 296
13.3.2 Solid Electrolytes Based on CeO2 298
13.4
Mixed Oxides with Mixed Conductivity 301
13.5
Applications of Mixed Oxides as Electrolytes and Mixed
Conductors 303
13.6
Conclusions 306
References 306
14
CO2 Capture Using Dense Perovskite Membranes: Permeation
Models 311
Marc Pera-Titus
14.1
14.2
MIEC Membranes for Gas Separation 311
Background for Mass Transfer Modeling in Perovskite
Membranes 312
Gas Permeation Models for Perovskite Membranes 315
Single-Phase Perovskite Membranes 316
Models for O2 Semipermeation 318
Models for H2 Semipermeation 322
Dual-Phase Perovskite Membranes 325
Models for H2 Semipermeation within Supported Ni/Perovskite
DFMs 326
Models for H2 Semipermeation in Ni-Cermets DFMs 326
Models for CO2 Semipermeation in Infiltrated MC/Perovskite
DPMs 327
Measurement of Diffusion and Surface Exchange Coefficients 329
Semipermeation Coupled to Electrical Potential Measurements 329
Isotopic Exchange Depth Profile (IEDP) 331
Electrical Conductivity Relaxation (ECR) 333
Electrochemical Impedance Spectroscopy (EIS) 333
Diffusion and Surface Exchange Coefficients: Structure–Property
Correlations 334
Conclusions 334
Glossary 335
14.3
14.3.1
14.3.1.1
14.3.1.2
14.3.2
14.3.2.1
14.3.2.2
14.3.2.3
14.4
14.4.1
14.4.2
14.4.3
14.4.4
14.4.5
14.5
www.pdfgrip.com
XI
XII
Contents
Greek Symbols 336
Subscripts 336
Superscripts 337
Acronyms 337
References 337
15
Introduction to Rational Molecular Modeling Approaches
Randy Jalem and Masanobu Nakayama
15.1
15.2
15.2.1
15.2.2
15.3
15.4
15.5
15.6
15.7
Introduction 343
Theoretical Background on Ab Initio Calculation 343
Brief Review of Elementary Quantum Chemistry 343
Density Functional Theory 346
Simulation Model Construction 347
Electronic Structure 349
Ionic Transport 351
Atomic Arrangement, Phase Stability, and Transition 354
Conclusions and Outlook 359
References 360
343
Volume 2
Part Two Perovskite and Related Mixed Oxides in Catalysis:
From the Structure to the Catalytic Properties 367
16
Methane Combustion on Perovskites 369
Athanasios Ladavos and Philippos Pomonis
16.1
Perovskites as a Diverse and Active Class of Materials 369
16.1.1 Structural Diversity, Tolerance Factor, and Thermodynamic
Stability 370
16.2
Mixed Valences in Perovskites 371
16.2.1 Mixed Valences Due to Anion Deficiencies 371
16.2.2 Mixed Valences Due to Isostructural Substitution
of Cations 373
16.3
The Reversed Uptake of Oxygen and Its Different
Sources 373
16.4
The Mechanism of Methane Combustion 376
16.5
Kinetics of Methane Combustion 378
16.5.1 Rideal–Eley kinetics 379
16.5.2 First-Order Kinetics 380
16.5.3 The Power Law Kinetics 384
16.5.4 The Two Term Kinetics 385
16.6
Conclusions 386
Acknowledgments 387
References 387
www.pdfgrip.com
Contents
17
Total Oxidation of Volatile Organic Compounds
Vasile I. Parvulescu
17.1
17.2
17.3
Introduction 389
Specificity of Perovskites for Total Oxidation of VOCs 391
Morphology of Perovskites Investigated for Total Oxidation of
VOCs 395
Total Oxidation of VOCs under Thermal Activation
Conditions 397
Total Oxidation of Light Hydrocarbons 399
Total Oxidation of Oxygenated Organic Compounds 401
Total Oxidation of Halogenated Organic Compounds 402
Total Oxidation under Plasma Activation Conditions
in Gas 404
Photocatalytic Destruction of VOC 406
Conclusions 407
References 408
17.4
17.5
17.6
17.7
17.8
17.9
17.10
389
18
Total Oxidation of Heavy Hydrocarbons and Aromatics
Vasile I. Parvulescu and Pascal Granger
18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9
18.10
18.11
Introduction 413
Perovskites and Oxygen Vacancy 414
Total Oxidation under Thermal Activation Conditions 416
Total Oxidation of Aromatic Hydrocarbons 417
Total Oxidation of Polycyclic Aromatic Hydrocarbons 424
Total Oxidation of Soot 425
Total Oxidation of Halogenated Hydrocarbons 426
Total Oxidation under Plasma Activation Conditions 428
Total Oxidation of Aromatics 429
Total Oxidation of Soot 431
Conclusions 431
References 432
19
Progresses on Soot Combustion Perovskite Catalysts
Agustín Bueno-López
19.1
19.2
19.3
Introduction 437
Particular Aspects of the Soot Combustion Reactions 438
Soot Combustion Perovskite Catalysts: Effect of Partial Substitution of
Cations in the Perovskite Oxide 439
Kinetic and Mechanistic Studies 442
Three-Dimensionally Ordered Macroporous Soot Combustion
Perovskite Catalysts 444
Study of Soot Combustion Perovskite Catalysts in Real Diesel
Exhausts 445
Microwave-Assisted Perovskite-Catalyzed Soot
Combustion 446
19.4
19.5
19.6
19.7
www.pdfgrip.com
413
437
XIII
XIV
Contents
19.8
19.9
20
Deactivation of Soot Combustion Catalysts by Perovskite Structure
Formation 446
Conclusions 446
Acknowledgments 447
References 447
Low-Temperature CO Oxidation 451
Oscar H. Laguna, Luis F. Bobadilla, Willinton Y. Hernández,
and Miguel Angel Centeno
20.1
20.2
20.2.1
20.2.2
20.2.3
20.3
Overview 451
Low-Temperature CO Oxidation Reaction 453
LaBO3-Type Perovskites 454
La1 xAxB1 yB´ yO3±δ-Type Perovskites 456
Noble Metal–Perovskite Hybrid Materials 456
H2 Purification-Related CO Oxidations: Water-Gas Shift (WGS) and
PROX Reactions 459
20.3.1 Perovskites for the Water-Gas Shift Reaction 460
20.3.2 Perovskites for the Preferential CO Oxidation in the Presence of H2
(PROX) 464
20.4
Concluding Remarks 468
Acknowledgments 468
References 468
21
Liquid-Phase Catalytic Oxidations with Perovskites and
Related Mixed Oxides 475
Viorica Parvulescu
21.1
21.2
21.3
21.3.1
21.3.2
21.3.3
21.4
21.4.1
21.4.2
21.5
21.6
Introduction 475
Active Sites and Oxidants 476
Catalytic Reactions with Green Oxidants 480
Perovskites Catalysts 480
Microporous Mixed Oxide Catalysts 483
Mesoporous Mixed Oxide Catalysts 486
Heterogeneous Photo-Fenton Oxidation 488
Photo-Fenton Reactions with Perovskites 490
Photo-Fenton Reactions with Porous Mixed Oxides 491
Photocatalytic Ozonation Reactions 492
Conclusions 493
References 494
22
Dry Reforming of Methane
Catherine Batiot-Dupeyrat
22.1
22.2
Introduction 501
LaNiO3 as Catalyst Precursor for Carbon Dioxide Reforming of
Methane 502
Influence of the Substitution of Nickel in the Perovskite
LaNi1 yByO3 506
22.3
501
www.pdfgrip.com
Contents
22.4
22.5
22.6
22.7
Influence of the Substitution of Lanthanum in the Perovskite
La1 xAxNi1 yByO3 507
Perovskite as Support of Active Sites in the Dry Reforming of
Methane 510
Supported Perovskite for Dry Reforming of Methane 510
Conclusion 512
References 512
23
Recent Progress in Oxidative Conversion of Methane to
Value-Added Products 517
Evgenii V. Kondratenko and Uwe Rodemerck
23.1
23.2
23.2.1
23.2.2
23.2.3
23.3
23.4
23.5
Methane: Sources and Feedstock for Chemical Industry 517
Oxidative Coupling of Methane 519
OCM Reactors and Modes of Operation 520
OCM Process Concepts 522
Strategies for Developing New OCM Catalysts 526
Methane to Methanol and Its Derivatives 528
Methane to Acetic Acid 530
Conclusions 532
References 533
24
Steam Reforming of Alcohols from Biomass Conversion for H2
Production 539
Florence Epron, Nicolas Bion, Daniel Duprez, and
Catherine Batiot-Dupeyrat
24.1
24.2
24.2.1
24.2.2
24.2.2.1
24.2.2.2
24.3
24.3.1
24.3.1.1
24.3.1.2
24.3.1.3
24.3.2
24.3.3
24.4
Introduction 539
Generalities on Alcohol Steam Reforming 539
Types of Alcohols Used 539
Reactions Involved and Thermodynamic Data 540
Ethanol Steam Reforming 540
Glycerol Steam Reforming 542
Catalysts 544
Types of Catalysts Used 544
Noble Metal Catalysts 545
Non-Noble Metal Catalysts 545
Effect of the Support 546
Why Perovskite-Type Catalysts are Good Candidates? 547
General Assessement 549
Catalytic Performances of Perovskite-Type Catalysts for
H2 Production from Alcohols 549
24.4.1 Ethanol Steam Reforming 549
24.4.2 Glycerol Steam Reforming 551
24.5
Summary and Outlook 552
References 553
www.pdfgrip.com
XV
XVI
Contents
25
Three-Way Catalysis 559
Ioannis V. Yentekakis and Michalis Konsolakis
25.1
25.2
Three-Way Catalytic Converters (TWCs): An Introduction 559
Three-Way Catalytic Materials: Potentials/Aptitudes,
Limitations, and Future Trends 563
Three-Way Catalysis by Ceria and Ceria-Based Mixed Oxides 565
CO Oxidation 567
Oxidation of Hydrocarbons 568
NO Reduction by CO or HCs 568
Simulated Stoichiometric Exhaust Conditions 568
Application of Perovskites in Exhaust Emission Control 570
Model Reactions 572
CO Oxidation 572
N2O Decomposition 573
NO Reduction by CO 573
NO Reduction by Propene 575
Simulated Exhaust Conditions 576
Conclusions and Guidelines 579
References 580
25.3
25.3.1
25.3.2
25.3.3
25.3.4
25.4
25.4.1
25.4.1.1
25.4.1.2
25.4.1.3
25.4.1.4
25.4.2
25.5
26
Lean Burn DeNOx Applications: Stationary and
Mobile Sources 587
Angelos M. Efstathiou and Vasilis N. Stathopoulos
26.1
26.2
26.2.1
26.2.2
26.3
26.3.1
26.3.2
26.3.3
26.4
Scope 587
Introduction 588
Hydrogen-Selective Catalytic Reduction (H2-SCR) 588
Lean NOx After Treatment of Diesel Engine Emissions 590
Case Studies 594
H2-SCR of NO 594
Lean NOx Trap 601
Simultaneous NOx Reduction and Soot Oxidation 605
Concluding Remarks 605
References 606
27
Catalytic Abatement of N2O from Stationary Sources
Pascal Jean-Philippe Dacquin and Christophe Dujardin
27.1
27.2
Introduction 611
The Abatement of N2O From Nitric Acid Plant:
A Case Study 613
Different Possible Scenarios 613
High-Temperature Decomposition of N2O 615
Medium-Temperature Decomposition of N2O 618
End-of-Pipe Technologies 622
Conclusion 626
References 627
27.2.1
27.2.2
27.2.3
27.2.4
27.3
www.pdfgrip.com
611
Contents
28
Perovskites as Catalyst Precursors for Fischer–Tropsch Synthesis
Anne-Cécile Roger and Alain Kiennemann
28.1
28.2
28.2.1
28.2.2
28.2.2.1
28.2.2.2
28.3
28.4
Introduction 631
Alcohols Synthesis 632
Methanol Synthesis 633
Higher Alcohols Synthesis 638
Ethanol Synthesis 638
C1–Cn Alcohols Synthesis 639
Hydrocarbons Synthesis 644
Conclusions 654
References 654
29
FexZr1 − xO2 and Ce1 − xFexO2 − δ Mixed Oxide Catalysts:
DRIFTS Analyses of Synthesis Gas and TPSR of Propane Dry
Reforming 659
Rodrigo Brackmann, Ricardo Scheunemann, Andre Luiz Alberton, and
Martin Schmal
29.1
29.2
29.2.1
29.2.1.1
29.2.1.2
29.2.1.3
29.2.2
631
Introduction 659
FexZr1 xO2 and Ce1 xFexO2 δ Mixed Oxide Systems 659
Part 1: DRIFTS Analyses with FexZr1 xO2 Mixed Oxides 661
CO Adsorption 661
Adsorption of CO + O2 + He 663
Adsorption of CO + O2 + H2 + He 664
Part 2: TPSR of Propane Oxidation with CO2 on Ce1 xFexO2 δ Mixed
Oxides 667
29.2.2.1 Thermodynamics 667
29.2.2.2 Temperature-Programmed Surface Reaction 667
29.3
Conclusions 671
References 672
30
Photocatalytic Assisted Processes 675
Bogdan Cojocaru and Vasile I. Parvulescu
30.1
30.2
30.2.1
30.2.2
30.2.3
30.2.4
30.2.5
30.2.6
30.2.7
30.3
30.3.1
30.3.2
30.3.3
Introduction 675
Titanates 677
Calcium Titanates 677
Strontium Titanates 678
Barium Titanates 683
Lanthanum Titanates 684
Iron Titanates 685
Other Titanates 685
Bismuth Titanates 686
Ferrites 686
Calcium Ferrites 686
Strontium Ferrites 686
Barium Ferrites 687
www.pdfgrip.com
XVII
XVIII
Contents
30.3.4
30.3.5
30.3.6
30.4
Yttrium Ferrites 687
Rare Earth Ferrites 688
Other Ferrites 689
Conclusions 690
References 690
Part Three
31
Future Prospects from Synthesis to Reactor Design 699
Mesoporous TM Oxide Materials by Surfactant-Assisted Soft
Templating 701
Altug S. Poyraz, Yongtao Meng, Sourav Biswas, and Steven L. Suib
31.1
Introduction 701
31.1.1 Use of a Hard Template 701
31.1.2 Mesoporous Oxide Materials by Chemical
Transformation 702
31.1.3 Mesoporous Oxide Materials by Soft Micelle Templating 703
31.2
Surfactant and Micelleization 705
31.2.1 Types of Surfactants 705
31.2.2 Inorganic Additives 705
31.2.3 Organic Additives 706
31.3
Surfactant–Inorganic (S–I) Interactions 707
31.3.1 Thermodynamics of Mesostructured Materials 707
31.3.2 Surfactant–Inorganic (ΔGinter) Interactions 707
31.3.2.1 Coulombic S–I Interactions for Mesoporous TM Oxides 708
31.3.2.2 Covalent S–I Interactions for Mesoporous TM Oxides 709
31.3.2.3 S to I Charge Transfer Interactions for Mesoporous TM Oxides 710
31.3.2.4 Hydrogen-Bonding (S–I) Interactions for Mesoporous
TM Oxides 711
31.4
Stability of a Mesoporous TM Oxide 712
31.4.1 Template Removal 713
31.5
Summary and Future Prospects 713
References 714
32
Development of Robust Mixed-Conducting Membranes
with High Permeability and Stability 719
Tomás Ramirez-Reina, José Luis Santos, Nuria García-Moncada,
Svetlana Ivanova, and José Antonio Odriozola
32.1
32.2
32.3
32.3.1
32.3.2
32.3.3
32.4
Overview 719
Mechanical Robustness 721
Chemical Robustness 725
Tolerance Toward CO2 725
Tolerance Toward SO2 729
Tolerance Toward Reducing Environments 731
Future Applications 732
References 732
www.pdfgrip.com
Contents
33
Catalytic Reactors with Membrane Separation
Fausto Gallucci and Jon Zuniga
33.1
33.2
33.2.1
33.2.2
33.3
33.3.1
33.4
33.5
Introduction 739
Types of Reactors 740
Packed Bed Membrane Reactors 740
Fluidized Bed Membrane Reactors 744
Membranes for O2 Separation 753
Membrane Sealing 755
Membrane Reactors with O2 Membranes 758
Conclusions 768
References 768
34
The Development of Millistructured Reactors for High
Temperature and Short Time Contact 773
Ana Raquel de la Osa, Anne Giroir-Fendler, and Jose Luis Valverde
34.1
34.2
34.2.1
34.2.2
34.2.3
34.2.3.1
34.2.3.2
34.2.3.3
34.2.4
34.2.5
34.3
34.3.1
34.3.2
34.3.3
34.3.4
34.3.5
34.3.5.1
34.3.5.2
34.3.6
34.3.6.1
34.3.6.2
34.3.6.3
34.3.6.4
34.3.7
34.3.7.1
34.3.7.2
34.3.8
34.3.8.1
34.3.8.2
34.3.8.3
Introduction 773
Classification of Microreactors 774
Capacity 775
Material 775
Reaction Phase 776
Reactions Involving Liquids 776
Gas Phase 776
Catalytic Reactions Involving Three Phases 777
Catalytic System 777
Other Configurations 778
Applications and Possible Scale-up 778
Ammonia Oxidation 779
Diesel Particulate Combustion 779
Ethylene Oxide Synthesis 779
Oxidative Coupling of Methane 779
Hydrogenation Reactions 780
Hydrogenation of Benzene to Cyclohexene 780
Hydrogenation of Cyclohexene 780
Dehydrogenation Reactions 780
Dehydrogenation of Methylcyclohexane 780
Dehydrogenation of Cyclohexane 780
Oxidative Dehydrogenation of Methanol 781
Dehydrogenation of Alkanes 781
Synthesis Gas Production 781
Steam Methane Reforming 781
Partial Oxidation of Methane 781
Fuel Production 781
Direct Partial Oxidation of Methane to C1 Oxygenates 781
Total Syngas Methanation to Synthetic Natural Gas 782
Fischer–Tropsch Synthesis 782
www.pdfgrip.com
739
XIX
XX
Contents
34.3.8.4
34.3.8.5
34.3.8.6
34.3.8.7
34.4
34.5
Synthesis of Methanol and Ethanol 783
Synthesis of Dimethyl Ether 783
Biodiesel Production 783
Hydrogen Production 784
Simulation Case 785
Conclusions 789
References 791
35
Single Brick Solution for Lean-Burn DeNOx and Soot Abatement
Sonia Gil, Jesus Manuel Garcia-Vargas, Leonarda F. Liotta,
Philippe Vernoux, and Anne Giroir-Fendler
35.1
35.2
35.2.1
35.2.2
Introduction 797
Diesel Posttreatment 799
Specificity of Diesel Engine 799
Diesel Unburned Hydrocarbon and Carbon Monoxide
Oxidation 799
Treatment of Soot 801
DeNOx Reduction 803
Urea and NH3 Selective Catalytic Reduction 804
Single Brick Solution for Lean-Burn DeNOx and Soot
Abatement 807
Conclusion 810
References 811
35.2.3
35.2.4
35.2.4.1
35.2.4.2
35.3
797
36
Tools for the Kinetics of Fast Reactions 817
Gregory Biausque, Marie Rochoux, David Farrusseng, and Yves Schuurman
36.1
36.2
36.2.1
36.2.2
36.2.3
36.2.4
36.2.5
Introduction 817
Oxygen Interaction 817
Oxygen Nonstoichiometry 818
Oxygen Isotopic Exchange Techniques 819
Secondary Ion Mass Spectrometry 819
Steady-State Isotopic Transient Oxygen Exchange 819
Case Study: Prediction of the Oxygen Permeation Flux through a Thin
Ceramic Membrane from Powder Measurements 820
Conclusions 823
Measurement of Kinetics of Fast Reactions 823
Annular Reactor 824
Modeling of Annular Reactors 825
Case Study: Kinetics of High-Temperature Ammonia Oxidation in an
Annular Reactor 827
TAP Reactor 830
Case Study: TAP Experiments for Ammonia Oxidation over
LaCoO3 831
Conclusions 833
References 833
36.2.6
36.3
36.3.1
36.3.2
36.3.3
36.3.4
36.3.5
36.3.6
www.pdfgrip.com
Contents
37
Perovskites as Oxygen Carrier-Transport Materials for Hydrogen and
Carbon Monoxide Production by Chemical Looping Processes 839
Lori Nalbandian and Vassilis Zaspalis
37.1
37.1.1
37.1.2
37.1.3
37.1.4
Introduction 839
Chemical Looping Combustion 839
Oxygen Carriers 840
Chemical Looping Reforming 841
Chemical Looping Water Splitting and Chemical Looping
Carbon Dioxide Splitting 842
Thermochemical Water or Carbon Dioxide Splitting 842
Chemical Looping in Dense Membrane Reactors 843
Perovskites for H2 and CO Production by Chemical Looping
Processes 844
Powdered Perovskites: Chemical Looping Processes 845
Reduction by an Oxidizable Compound 845
Reduction by Solar Radiation 849
Perovskites as Dense Membranes 850
Perovskites Used as Supports 856
Conclusions 857
References 857
37.1.5
37.1.6
37.2
37.2.1
37.2.1.1
37.2.1.2
37.2.2
37.2.3
37.3
38
Perovskites and Related Mixed Oxides for SOFC Applications 863
Steven S.C. Chuang and Long Zhang
38.1
38.2
38.3
38.3.1
38.3.2
38.4
38.5
Introduction 863
Fuel Cells 864
Perovskites 870
Perovskite as a Cathode Material 870
Low-Temperature Cathodes 873
Anode Materials 874
Summary and Future R&D 875
References 876
39
Perovskite Membranes for CO2 Capture: Current Trends and Future
Prospects 881
Marc Pera-Titus and Anne Giroir-Fendler
39.1
39.2
Introduction 881
Pre-, Post-, and Oxy-combustion CO2 Capture: High- versus
Low-Temperature Membrane Technologies 882
Low-Temperature Membranes: Porous Inorganic Membranes 883
High-Temperature Membranes: Mixed Ionic–Electronic Conducting
Membranes Based on Perovskites 885
R&D Membrane Concepts for High-Temperature CO2 Capture 889
Perovskite Membranes for O2 Separation 889
O2 Separation and Combustion 889
Gasification Systems Combined with Combustion 890
39.2.1
39.2.2
39.3
39.3.1
39.3.1.1
39.3.1.2
www.pdfgrip.com
XXI
XXII
Contents
39.3.2
39.3.3
39.4
39.4.1
39.4.2
39.4.2.1
39.4.2.2
39.4.2.3
39.4.3
39.4.3.1
39.4.3.2
39.4.3.3
39.4.4
39.5
Perovskite Membranes for H2 Separation and Steam Dosing 891
Perovskite-Containing Membranes for CO2 Separation 892
Recent Membrane Developments for CO2 Capture 893
General Criteria for Membrane Design 893
Perovskite Membranes for Selective O2 Permeation 895
Co-Containing Perovskites 895
Co-Free Perovskites 901
Dual-Phase Membranes 902
Perovskite Membranes for Selective H2 Permeation 904
Ce-Containing Perovskites (Cerates) 904
Dual-Phase Metal Cerates: Cermets 905
Ce-Free Formulations 909
Molten Carbonate/Perovskite Membranes for Selective CO2
Permeation 910
Conclusions and Perspectives 913
Glossary 915
Greek Symbols 915
Subscripts 915
Acronyms 915
References 916
Index 929
www.pdfgrip.com
XXIII
List of Contributors
Houshang Alamdari
Carmela Aruta
Laval University
Department of Mining,
Metallurgical and Materials
Engineering
1065 avenue de la médecine
Quebec City, QC G1V 0A6
Canada
National Research Council
CNR-SPIN
Via del Politecnico 1
00133 Rome
Italy
Andre Luiz Alberton
Federal University of Rio de
Janeiro/COPPE
Department of Chemical
Engineering/NUCAT
Av.Horacio Macedo 2030
CEP 21941-972
Centro de Tecnologia Bl.G – 121
Cidade Universitária
Rio de Janeiro
Brazil
Matteo Ardit
University of Ferrara
Department of Physics and Earth
Sciences
Via Saragat 1
44122 Ferrara
Italy
Catherine Batiot-Dupeyrat
Université de Poitiers
Institut de Chimie des Milieux et
Matériaux de Poitiers (IC2MP)
ENSIP, UMR CNRS 7285
1 rue Marcel Doré, TSA 41105
86073 Poitiers Cedex 9
France
Alexandre Bayart
Université d’Artois
Faculté des Sciences Jean Perrin
Unité de Catalyse et de Chimie du
Solide (UCCS)
CNRS UMR 8181
Rue Jean Souvraz – SP 18
62307 Lens
France
www.pdfgrip.com