Tải bản đầy đủ (.pdf) (8 trang)

Đánh giá khả năng phát triển sinh khối tảo Chlorella vulgaris ứng dụng trong xử lý nước thải nuôi tôm

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (637.03 KB, 8 trang )

Chuyên san Phát triển Khoa học và Công nghệ số 4 (3), 2018

ĐÁNH GIÁ KHẢ NĂNG PHÁT TRIỂN SINH KHỐI TẢO CHLORELLA
VULGARIS ỨNG DỤNG TRONG XỬ LÝ NƯỚC THẢI NUÔI TÔM
Nguyễn Thị Mỹ Linh1, Nguyễn Trọng Nhân1, Lương Quang Tưởng1,
Nguyễn Thị Hồng Nhung1, Lê Thị Ánh Hồng2, Trần Thành1*
1
Trường Đại học Nguyễn Tất Thành
2
Viện Sinh học Nhiệt đới, Viện Hàn lâm và Khoa học Việt Nam
*Tác giả liên lạc:
(Ngày nhận bài: 10/7/2018; Ngày duyệt đăng: 15/9/2018)
TÓM TẮT
Ứng dụng tảo cho xử lý môi trường đang là một lựa chọn cho sản xuất thủy sản bền
vững, đặc biệt là trong xử lý nước thải nuôi tôm. Nghiên cứu này nhằm đánh giá khả
năng phát triển sinh khối, các điều kiện ảnh hưởng và khả năng xử lý ô nhiễm của tảo
Chlorella Vulgaris trên nguồn nước thải sau nuôi bằng thực nghiệm trên mơ hình ni
cơng suất 120L (Mẻ/chu kỳ). Kết quả ban đầu cho thấy ở nông độ 10% tảo ban đầu cho
vào sinh khối tảo đạt 1.13883±0.01893 g/l ngày thứ 15, ngắn nhất ở 15% ngày thứ 9
đạt 1.10667±0.02363 g/l và điều kiện chiếu sáng nhân tạo (đèn LED) thích hợp cho sinh
trưởng của tảo C.vulgaris là ở ánh sáng đỏ với cường độ chiếu sáng là 120 µmol/m2/s
(6400 lux). Kết quả thử nghiệm xử lý nước thải nuôi tôm sau 10 ngày cho thấy hiệu quả
xử lý TP đạt 95.24%, COD giảm còn 78 mg/L (hiệu quả xử lý 84,64%), hiệu quả xử lý
NH4, NO3 và NO2 lần lượt là 91,31%, 81,56% và 82,97%.
Từ khóa: Tảo, tảo Chlorella vulgaris, nước thải, xử lý nước thải nuôi tôm.
EVALUATION OF CHLORELLA VULGARIS ALGAE BIOMASS
UTILIZATION CAPABILITY IN SHRIMP WASTEWATER
TREATMENT CAPACITY
1
Nguyen Thi My Linh , Nguyen Trong Nhan1, Luong Quang Tuong1,
Nguyen Thi Hong Nhung1, Le Thi Anh Hong2, Tran Thanh1*


1
Nguyen Tat Thanh University
2
Institute of Tropical Biology, Vietnam Academy of Science and Technology
*Corresponding Author:
ABSTRACT
Application of algae technology for environmental treatment is a widely option for
sustainable aquaculture production, especially in the treatment of shrimp wastewater.
This study aims to assess the biomass development as well as influencing factors, and
the ability to nutrients handle in shrimp wastewater of Chlorella Vulgaris in an
experimental model of 120 L capacity. Initial results showed that 10% of algae initially
gave algae biomass at 1.13883 ± 0.01893 g/L on day 15.The sample 15% was shortest
on day 9 at 1.10667 ± 0.02363 g/L and the light conditions (LED) matched the growth
of C vulgaris is red, brightness at 120 μmol /m2/s (6400 lux). Initial results showed that
10% of algae initially gave algae biomass at 1.13883 ± 0.01893 g/l on 15th day, the
sample 15% was shortest on day 9 at 1.10667 ± 0.02363 g/l and the light conditions
(LED) matched the growth of C. Vulgaris is red, brightness at 120 μmol/m2/s (6400 lux).
The results of treatment after 10 days showed that treatment efficiency on total Photpho
was 95.24%, remain COD was 78 mg/L (treatment efficiency 84.64%), the efficiency of
treatment on NH4+, NO3-, and NO2- were 91.31%, 81.56%, and 82.97%, respectively.
Keywords: Algae, Chlorella Vulgaris, wastewater, shrimp waste water treatment.
14


Chuyên san Phát triển Khoa học và Công nghệ số 4 (3), 2018

năng suất sinh khối cao và dễ nuôi trồng,
đặc biệt có thể thích nghi và phát triển tốt
trong môi trường nước thải. Một số đề tài
nghiên cứu sử dụng Chlorella để xử lý

nước thải từ hầm ủ Biogas và những cơng
trình ni Chlorella để thu sinh khối với
kỹ thuật ni đơn giản và ít tốn kém đã
được thực hiện rất thành cơng. Mặc dù đã
có một số nghiên cứu về xử lý nước thải có
hàm lượng các chất hữu cơ cao đặt biệt là
nước thải nuôi tôm nước lợ và nước biển
nhưng nhìn chung vẫn cịn hạn chế, chưa
mang tính bao quát, chưa được sự quan
tâm đúng mức của các cấp chính quyền
nên nước thải vẫn đang ảnh hưởng đến môi
trường và dân sinh vùng lân cận.
Như vậy, để góp phần thúc đẩy thế mạnh
của tảo Chlorella trong xử lý nước thải
thủy sản. Đề tài “Nghiên cứu phát triển
sinh khối tảo Chlorella Vulgaris ứng dụng
trong xử lý nước thải nuôi tôm” được thực
hiện thử nghiệm đánh giá khả năng phát
triển sinh khối và khả năng xử lý ô nhiễm
của tảo Chlorella Vulgaris trên nguồn
nước thải sau nuôi tôm với mong muốn cải
thiện môi trường, giảm ô nhiễm nguồn
nước và phát triển nuôi trồng thủy sản bền
vững hơn.

GIỚI THIỆU
Hiện nay, nghề nuôi tôm ở Việt Nam đang
trên đà phát triển rất mạnh mẽ. Năm 2003,
lần đầu tiên kim nghạch xuất khẩu tôm
vượt quá mức 1 tỷ USD đã nâng cao đời

sống cho rất nhiều hộ dân trong vùng. Tuy
mang lại giá trị kinh tế cao nhưng ngành
thủy sản nuôi tơm đang phải đối phó với
những vấn đề mơi trường và dịch bệnh.
Nước thải được thải ra môi trường không
đúng quy cách, khơng xử lý và tích tụ lâu
ngày sẽ là một gánh nặng to lớn với môi
trường, tạo điều kiện phát sinh các mầm
bệnh, vi sinh vật gây bệnh và người nuôi
phải sử dụng một lượng lớn kháng sinh.
Năm 2010, Nhật đã cảnh báo 28/678 lô
hàng tôm nhập vào Nhật có mức kháng
sinh Quinolone vượt mức cho phép. Do
đó, để đáp ứng các yêu cầu về tiêu chuẩn
xuất khẩu, nguồn nước thải ni trồng
thủy sản có chứa nhiều thành phần dinh
dưởng thừa phải được xử lý triệt để trước
khi thải ra nguồn tiếp nhận.
Xử lí nước thải ni tơm với phương pháp
sinh học, đặc biệt ứng dụng các vi thực vật
như tảo đang là phương pháp được đánh
giá cao với ưu điểm thân thiện môi trường
mà vẫn xử lý hiệu quả các chất ô nhiễm
dinh dưỡng thông thường với các thiết bị
ni khá đơn giản và chi phí vận hành rất
thấp, nước thải ra sẽ hoàn toàn đạt tiêu
chuẩn cho phép. Đặc biệt, sinh khối thu
được sau xử lý là nguồn thức ăn giàu dinh
dưỡng cho tơm, cá.
Trong nhóm vi tảo lục thì tảo Chlorella

Vulgaris có tiềm năng xử lý nước thải cơng
nghiệp rất lớn vì tốc độ sinh trưởng cao,

VẬT LIỆU VÀ PHƯƠNG PHÁP
NGHIÊN CỨU
Vật liệu nghiên cứu
Vi tảo được chọn trong nghiên cưu này là
giống vi tảo chlorella vulgaris từ Viện
nghiên cứu ni trồng thủy sản II,
TP.HCM.

Hình 1. Vị trí lấy mẫu nước thải ni tơm và mơ hình thực nghiệm xử lý (A) Mơ hình
thực nghiệm nuôi tảo; (B) Địa điểm lấy mẫu nước thải nuôi tôm thử nghiệm
15


Chuyên san Phát triển Khoa học và Công nghệ số 4 (3), 2018

Nguồn nước thải nuôi tôm được lấy từ ao
ni tơm của anh Nguyễn Hồi Nam,
đường Bà Xán, ấp Trần Hưng Đạo, xã Tam
Thới Hiệp, huyện Cần Giờ. Địa điểm thí
nghiệm thực hiện tại phịng thí nghiệm vi
sinh và công nghệ môi trường – Viện Kỹ
thuật Công nghệ cao NTT.
Các thí nghiệm được vận hành trên mơ
hình ni với mơ tả chi tiết chính như sau:
Bình nhựa 5L (1), máy bơm (2) đầu và ống
Tiến trình và phương pháp nghiên cứu


thổi khí (5) gắn với đường bơm oxy (7) nối
dài xun qua nắp (nắp bình để giảm sự
thốt khí CO2) bình lên đi vào đường ống
nệp (8) đến đầu chia (6) mắc vào máy bơm
oxy. Xung quanh bình ni được lắp đèn
led để đảm bảo cung cấp đủ ánh sáng cho
tảo hấp thu. Dây điện từ đèn led được đi
vào nệp và nối đến bộ điều khiển (4) và
đèn led được điều khiển bằng bộ nguồn với
5 công tắc điều khiển đóng mở.

.
Hình 2. Sơ đồ tiến trình nghiên cứu
Các thí nghiệm được thiết kế giống nhau vulgaris sau 15 ngày. Cấy 5%, 10%, 15%
ban đầu gồm các nghiệm thức được tiến tảo giống chlorella vulgaris (5% = 200ml
hành ni trong 3 bình PE 5L có chứa tảo giống đạt pha ổn định).
4000 ml môi trường cơ bản (Kun) đã được Thí nghiệm 2 khảo sát ảnh hưởng chế độ
hấp khử trùng ở 1 atm (121oC) trong 30 chiếu ánh sáng led tới khả năng tăng sinh
phút. Sau 15 ngày nuôi cấy tiến hành thu khối của tảo chlorella vulgaris. Lượng cấy
hoạch tảo bằng phương pháp sấy và đánh ban đầu lấy tối ưu từ thí nghiệm 1 tảo
giá sinh khối tảo bằng phương pháp định giống nuôi trong các điều kiện chiếu ánh
lượng khối lượng. Thí nghiệm được duy trì sáng led khác nhau: đơn màu đỏ, trắng, đỏ
trong điều kiện nhiệt độ phòng: 25 – 30oC; - trắng.
pH = 6 – 8; chiếu sáng bằng hệ thống đèn Đánh giá sơ bộ khả năng xử lý nước thải
sao cho cường độ ánh sáng tại bề mặt dung nuôi tôm bằng đánh giá các chỉ tiêu cơ bản
dịch là 120 µmol/m2/s (tương đương trong nước đầu vào và đầu ra theo QCVN
64000 lux), chiếu sáng liên tục 24/24. Các 02-19:2014/BNNPTNT bao gồm pH,
nghiệm thức luôn tiến hành lặp lại 3 lần.
COD. Ngồi ra cịn đánh giá thêm chỉ tiêu
Thí nghiệm 1 mục tiêu khảo sát ảnh hưởng NH4, NO3 và NO2 vốn là các chất có ảnh

của nồng độ tảo nuôi cấy ban đầu lên khả hưởng quan trong đến chất lượng nước
năng phát triển sinh khối tảo chlorella trong thời gian nuôi.
16


Chuyên san Phát triển Khoa học và Công nghệ số 4 (3), 2018

Thống kê và phân tích số liệu
Các số liệu được nhập và xử lý số liệu bằng
Excel, sau đó dùng phương pháp kiểm
định phân tích phương sai (ANOVA).

KẾT QUẢ VÀ THẢO LUẬN
Ảnh hưởng của nồng độ ban đầu lên sự
phát triển sinh khối của tảo Chlorella
vulgaris

Hình 3. Sinh khối tảo phát triển theo 3 nồng độ: 5%, 10%, 15% trong điều kiện ánh
sáng đỏ
Kết quả thí nghiệm như hình 3 cho thấy trưởng tương đối 0.83 g/l; 5% khối lượng
đối với ánh sáng đỏ, từng nồng độ ban đầu tăng lên 0.72 g/l tốc độ tăng khá chậm mặc
(NĐBĐ) cho vào khối lượng của tảo đều dù ngày 6 khoảng cách khối lượng tăng
tăng dần theo thời gian. Tuy nhiên, ở ba gần ở 10%. Bước qua ngày thứ 12 có sự
nồng độ sinh khối tảo phát triển khác nhau khác biệt rõ rệt, 15% khối lượng tảo có
ở NĐBĐ 15% tăng liên tục đến ngày thứ 9 chiều giảm xuống 0.9667 g/l, tốc độ tăng
đạt đỉnh cho sinh khối cao nhất. Trong khi trưởng -0.135 day-3 nhưng vẫn tăng trở lại
đó ở hai nồng độ cịn lại vẫn tăng và đạt ngày 15 (1.10667 ± 0.03512 g/l); tăng
đỉnh ở ngày 15. Trong 9 ngày đầu tảo cho mạnh vượt lên 1.13883±0.01893 g/l ở
vào ở giai đoạn trưởng thành khả năng nồng độ 10% cao hơn so với 15%; cịn lại
thích nghi cao tăng nhanh về khối lượng 5% vẫn tăng đều đến ngày 15 đạt

1.10667±0.02363 g/l (ở 15%); 10% tăng 0.82667±0.03329 g/l.

Hình 4. Sinh khối tảo phát triển theo 3 nồng độ: 5%, 10%, 15% trong điều kiện ánh
sáng trắng
17


Chuyên san Phát triển Khoa học và Công nghệ số 4 (3), 2018

Kết quả ở 3 nồng độ nuôi trong điều kiện
ánh sáng đỏ cho thấy để thu sinh khối tối
ưu nhất ở nông độ 10% là cao nhất
1.13883±0.01893 g/l, tuy nhiên phải mất
đến 15 ngày nuôi cấy trong khi đó cho sinh
khơi 1.10667±0.02363 g/l ở nồng độ 15%
chỉ mất 9 ngày.
Tương tự, so sánh ở ba nồng độ đối với ánh
sáng trắng cho thấy sự cách biệt khá rõ
NĐBĐ là 15% với hai nồng độ còn lại. Tốc
độ tăng trưởng trung bình 0.2272 day-3 đến
ngày 9 đạt đỉnh 1.10667±0.02309 g/l, sau
đó giảm dần 1.045± 0.0835g/l ngày 12 và
1.0633±0.0775 g/l ngày 15. Khác hẳn,

nồng độ 10% sinh khối tảo tăng liên tục
đến ngày 15 và đạt 1.0667 ±0.0592 g/l cao
hơn so với 15%. Ở nồng độ thấp nhất 5%
ngày thứ ba tăng khá nhanh 0.45167
±0.0454 g/l gần ngang bằng với 10%
(0.465±0.0606) sau đó tăng chậm dần

khoảng cách sinh khối giữa 2 nồng độ rõ
hơn, đạt cao nhât ngày 15 là
0.78833±0.0333 g/l.
Từ kết quả cho thấy ở ánh sáng trắng nồng
độ 15% cho sinh khối tối ưu nhất và trong
gian ngắn nhất đạt được tối ưu 1.10667±0.02309 g/l rơi vào ngày 9.

Hình 5. Sinh khối tảo phát triển theo 3 nồng độ: 5%, 10%, 15% trong điều kiện ánh
sáng hai màu trắng – đỏ
Cuối cùng ánh sáng trắng – đỏ ở 3 nồng đang ở giai đoạn trưởng thành, đồng thời
độ, 15% vẫn cho sinh khối cao nhất ở ngày do khả năng thích nghi của tảo C.Vulgaris
9: 0.9867±0.0375 g/l, sau đó giảm dần tốt, tốc độ sinh trưởng nhanh. So sánh với
xuống 0.8417±0.0508 g/l. Nồng độ 10% 3 nồng độ cho thấy ở nồng độ ban đầu 15%
tăng khá nhanh ngày thứ 6 và 9 kéo giảm đạt sinh khối cao nhất và cho sinh khối tối
khoảng cách so với 15% (0.052 và 0.37 ưu ở thời gian ngăn nhất vào ngày thứ 9.
g/l) và đạt đỉnh ngày 15 (0.96167±0.0425). Ảnh hưởng của loại ánh sáng lên sự
Còn 5% tăng khá ổn định có chiều cong đi phát triển sinh khối của tảo Chlorella
lên và ổn định từ ngày 12 (0.7817± vulgaris
0.0782) đến ngày 15 (0.795±0.0133 g/l) Kết quả thí nghiệm 2 cho thấy để nuôi
tăng không đáng kể. Tối ưu vẫn ở NĐBĐ nhân tạo tảo C.vulgaris tuy nhiên cần khắc
là 15%, tuy nhiên ngang 10% vẫn cho sinh phục hiện tượng mật độ tảo quá lớn ảnh
khối gần ngang vào ngày thứ 9 (-0.37 g/l hưởng khả năng đâm xuyên của ánh sáng.
so với 15%).
Khả năng đâm xuyên của ánh sáng phụ
Nhìn chung, sinh khối tảo tăng dần theo thuộc vào độ dài bước sóng ánh sáng. Theo
chiều tăng dần của nồng độ ni cấy ban đó, thí nghiệm 3 được thiết kế sử dụng ánh
đầu. điều này đúng với quy luật và kết quả sáng đèn LED (được cho rằng tiết kiệm
thí nghiệm phù hợp với nhiều nhận định điện năng hơn so với đèn huỳnh quang) tại
của các tác giả khác. Trong ngày đầu tảo cường độ 120 µmol/m2/s (tương ứng 6400
vào giai đoạn thích nghi, giai đoạn này lux tại mặt nước) với các khoảng bước

tương đối ngắn do tảo đưa vào mơi trường sóng khác nhau.
18


Chuyên san Phát triển Khoa học và Công nghệ số 4 (3), 2018

Hình 6. Sinh khối tảo phát triển theo từng loại ánh sáng màu: trắng, đỏ, trắng – đỏ
Trong loại ánh sáng khác nhau cho thấy Đánh giá khả năng xử lý nước thải nuôi
sinh khối tảo phát triển tốt cho sinh khối tôm của tảo Chlorella vulgaris
cao ở ánh sáng đỏ >>ánh sáng trắng>> ánh Nguyên nhân chỉ lựa chọn thí nghiệm đến
sáng trắng-đỏ. Ánh sáng trắng tăng liên tục 10 ngày, ta dựa vào pha sinh trưởng theo
trong 15 ngày với tốc độ tăng trưởng trung đồ thị , đến ngày thứ 10 mật độ tảo có dấu
bình 0.1483 day-3, khơi lượng cao nhất đạt hiệu giảm (đến pha suy vong) phải dừng
đỉnh 1.0667 ± 0.0592 g/l. Ánh sáng đỏ là thí nghiệm, để tránh hiện tượng tảo chết
cao nhất khối lượng đạt 1.1383 ± 0.0189 gây ô nhiễm lại môi trường khảo sát.
g/l vào ngày thứ 15. Thấp nhất là ánh sáng Qua thí nghiệm cho thấy tảo phát triển tốt
trắng-đỏ ngày 9 cho khối lượng là 0.9497 trong nước thải nuôi tôm và hấp thu lượng
± 0.1455 g/l và ngày 15 là 0.96167 ±
0.0425 g/l.
Mặc khác so sánh với cả 3 nồng độ ở từng
ánh sáng có bước sóng khác nhau cho thấy
ánh sáng đỏ vẫn cao nhất đến ánh sáng
trắng, thấp nhất là trắng-đỏ. Trong các dải
đơn sắc, ánh sáng đỏ tốt nhất cho sự phát
triển của tảo C.vulgaris. Điều này cũng
phù hợp với nhiều kết quả nghiên cứu
trước đó trên các nhóm tảo tương tự (Saha
và cs, 2013 trên Haematococcus pluvialis;
Wang và cs, 2007 trên Spirulina platensis;
Matthijs,

1996
trên
Chlorella
pyrenoidosa).

19


Chuyên san Phát triển Khoa học và Công nghệ số 4 (3), 2018

So với nghiên cứu của Trần Chấn Bắc
(2013) về nghiên cứu sử dụng nước thải ao
nuôi thủy sản để nuôi Chlorella kết luận
rằng tảo phát triển tốt trong nước thải ao
cá tra và hấp thu lượng dinh dưỡng tốt nhất
cũng vào trong ba đến năm ngày đầu (với
hiệu suất hấp thu cao nhất TP đạt 88,66%).
Như vậy, thí nghiệm nghiên cứu, đã có

hiệu quả xử lý photpho cao hơn so với
công bố nêu trên.
TN và TP là hai chất quan trọng cho sự
tăng trưởng và sự trao đổi chất của các tế
bào Tảo. Nước thải vẫn còn chứa các hợp
chất vô cơ như nitrat, amoni, photphat dẫn
đến hiện tượng phú dưỡng ở hồ gây nở hoa
tảo độc hại.

Hình 8. Kết quả xử lý Nitơ của tảo Chlorella vulgaris trong 10 ngày
Trong mơi trường nước, Nitrogen hịa tan với tốc độ tăng trưởng trung bình 0.1483

thường tồn tại dưới dạng amoni tổng số day-3, khôi lượng cao nhất đạt đỉnh 1.0667
(NH4+ và NH3), nitrat (NO3-), nitrit (NO2). ± 0.0592 g/l. Ánh sáng đỏ là cao nhất khối
Trong đó hai dạng NH3 và NO2- thường lượng đạt 1.1383 ± 0.0189 g/l vào ngày thứ
gây hại cho sinh vật. Hai dạng còn lại được 15 với cường độ sáng là 120 µmol/m2/s
thực vật và phiêu sinh thực vật sống trong (6400 lux). Thấp nhất là ánh sáng trắng-đỏ
nước hấp thu (Joseph et al (1993)), tảo hấp ngày 9 cho khối lượng là 0.9497 ± 0.1455
thu NH4+ và NO3- để tổng hợp sinh khối và g/l và ngày 15 là 0.96167 ± 0.0425 g/l. Tảo
tạo năng lượng. Kết quả thí nghiệm cho Chlorela Vugaris sinh trưởng trong nước
thấy hiệu suất xử lý của NO3 là 81,56%, thải tốt, hiệu quả xử lý Nito bởi tảo: NO3
NH4+ là 91,31%, NO2 là 82,97%.
là 81,56%, NH4 là 91,31%, NO2 là
82,97%. TP tối ưu nhất giảm từ 26.52mg/L
xuống cịn 1.26mg/L,COD giảm từ 508
KẾT LUẬN
Trên mơ hình thực tế, khảo sát sự ảnh mg/L xuống còn 78 mg/L. Hiệu suất xử lý
hưởng của nồng độ tảo ban đầu và loại ánh TP của mơ hình đạt được hơn 95,24% và
sáng màu đến sự tăng sinh khối của tảo COD đạt được hơn 84,64%. Mặc dù
Chlorella vulgaris trên mơ hình thử nghiên cứu cần qua nhiều bước nữa, nhưng
nghiệm cho kết quả sinh khối cao nhất ở những lợi ích mà cơng nghệ vi tảo - tảo
ánh sáng đỏ, sau đó đến ánh sáng trắng và Chlorela Vugaris mang lại cho môi trường
ánh sáng trắng-đỏ cho kết quả thấp nhất. và nông nghiêp là rất hứa hẹn.
Ánh sáng trắng tăng liên tục trong 15 ngày
TÀI LIỆU THAM KHẢO
BẮC, T. C. (2013). Nghiên cứu hiệu quả kỹ thuật nuôi sinh khối tảo Chlorella sp. sử
dụng nước thải từ ao ni cá tra. Tạp chí Khoa học Trường Đại học Cần Thơ. 28:
157-162.
CÔNG, P. T., T. Đ. DŨNG, Đ. T. T. TRÚC, N. Đ. HOÀNG, AND M. T. TRÚC (2012).
Chất lượng nước và bùn thải từ ao nuôi cá tra và ảnh hưởng đến môi trường sản
20



Chuyên san Phát triển Khoa học và Công nghệ số 4 (3), 2018

xuất nông nghiệp đồng bằng sông Cửu Long. Tạp chí Nơng nghiệp và Phát triển
Nơng nghiệp. số 1: trang 68-72.
DUNG, N. T. P., AND N. N. HOA (2012). Các rào cản kỹ thuật thương mại khi xuất
khẩu thủy sản Việt Nam vào thị trường Nhật. Tạp chí Khoa học. 215-223.
DƯƠNG, T. T. (2004). Tiêu thụ tôm của Việt Nam. Tạp chí Thủy Sản 2. 8-9.
ĐƠN, P. Đ. (2014). Ô nhiễm môi trường trong nuôi trồng và chế biến thủy sản ở Đồng
bằng Sơng Cửu Long. Tạp chí mơi trường 6.
THÀNH, D. T. (2012). Mơ hình xử lý nước thải nuôi tôm công nghiệp bằng tảo
Tetraselmis và nhuyễn thể 2 mảnh võ quy mô pilot. Trường Đại học Bách khoa, Sở
Khoa học và Công nghệ.
AGH, N., AND P. SORGELOOS (2005). Handbook of protocols and guidelines for
culture and enrichment of live food for use in larviculture. Urmia-Iran: Ediciones
Artemia & Aquatic Animals Research Center. 60.
LIU, Z.-Y., G.-C. WANG, AND B.-C. ZHOU (2008). Effect of iron on growth and lipid
accumulation in Chlorella vulgaris. Bioresource technology. 99: 4717-4722.
MATTHIJS HCP, BALKE H, VAN HES UM, KROON BMA, AND B. R. MUR LR
(1996). Application of light-emitting in algal culture (chlorella pyrenoidosa).
Biotechnol Bioeng 50. 98-107.
SAHA, S. K., E. MCHUGH, J. HAYES, S. MOANE, D. WALSH, AND P. MURRAY
(2013). Effect of various stress-regulatory factors on biomass and lipid production
in microalga Haematococcus pluvialis. Bioresource technology. 128: 118-124.
WANG CY, AND L. C. FU CC (2007). Effects of using light-emitting diodes on the
cultivation of Spirulina platensis. Biochem Eng J 27. 21-25.

21




×